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Abstract

In this paper, we present a semi-implicit method for the incompressible three-phase flow equa-
tions in two dimensions. In particular, a high order discontinuous Galerkin spatial discretization
is coupled with a backward Euler discretization in time. We consider a pressure-saturation for-
mulation, decouple the pressure and saturation equations and solve them sequentially while still
keeping each equation implicit in its respective unknown. We present several numerical examples
on both homogeneous and heterogeneous media, with varying permeability and porosity. Our
results demonstrate the robustness of the scheme. In particular, no slope limiters are required
and a relatively large time step may be taken.

1 Introduction

Many flow systems in porous media can be categorized as a three-phase flow, such as light oil,
heavy oil, and water. Predicting the evolution of the phases in space and time is essential in the
decision-making process for the oil and gas industry. The mathematical models are based on mass
conservation laws for each phase. Two-phase flow models have been heavily studied in the literature
and input functions such as capillary pressure and relative permeabilities are well-understood and
validated by core-flooding experiments [8]. On one hand, three-phase flow models can be viewed
as an extension of the two-phase flow models. On the other hand, there is less consensus on the
appropriate choice of the capillary pressure and relative permeability curves and existing models
from two-phase data may not agree with experimental results [3].

Our paper applies a discontinuous Galerkin (DG) method that uses piecewise polynomials of
degree from one to four to solve the incompressible three-phase flow problem. DG methods have
been successfully applied to single phase flow [5, 14] and to two-phase flow [16, 13, 15]. In particular,
robustness of the methods for single-phase and two-phase flow in heterogeneous media was shown
in [4, 17]. The lack of continuity between the mesh elements makes the DG method very suitable
for flow and transport in porous media. Local mass conservation is an inherent property of the
DG method. In addition, the method allows for discontinuous input data if discontinuity lines
agree with the mesh skeleton. Any promising discretization of the three-phase flow problem should
handle the strong heterogeneities of the medium. In this paper, we use realistic values for the
permeability and porosity fields. We note that the permeability values usually vary across six orders
of magnitude. These variations yield highly varying phase velocities via the generalized Darcy’s law.
Popular methods used by the oil and gas industry are the finite di↵erence methods and the cell-
centered finite volume methods. Both methods are only of first order and exhibit numerical di↵usion,
particularly in the case of heterogeneities [2, 18]. Other methods for solving the three-phase problem
include mixed finite elements and streamline front tracking [9, 1, 7].
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In a three-phase model, the unknowns, which are the saturation and pressure for each phase,
are related through relations like capillary pressures. This results in three independent unknowns.
In our work, we solve for the heavy oil pressure and the water and light oil saturations. We show
convergence of the method for discontinuous input data, such as permeability and porosity fields.
We vary the polynomial degree between one and four. This paper is related to a previous work
for modeling three-phase flow in homogeneous one-dimensional domains [12]. In a recent paper,
the DG method was applied to solve the black-oil problem in one-dimensional domains, which is a
compressible three-phase flow. In addition, the gas phase is assumed to be miscible in the oil phase
[20]. In [19], the finite volume method is combined with a DG method and slope limiters to solve
the two-phase and three-phase flow problems in the absence of capillary pressure.

An outline of the paper follows. In the next section, we introduce the saturation and pressure
equations and the input data. The numerical scheme is described in Section 4. Simulations on
homogeneous and heterogeneous porous media are shown in Section 5. Conclusions follow.

2 The Model Problem

For a porous medium ⌦ ✓ R2, the incompressible three-phase flow formulation consists of a coupled
system of three nonlinear partial di↵erential equations. We denote the phases by liquid (heavy
oil), aqueous (water), and vapor (light oil) and derive a pressure-saturation formulation using the
pressure of the liquid phase. The pressure of the liquid phase is denoted by p

o

and the saturations
of the aqueous and vapor phases are denoted by s

w

and s

g

, respectively. We have:
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r · u = 0 (3)
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Here, u denotes the total velocity of the system. The porosity and permeability of the medium
are denoted by � and K, respectively. The phase mobilities are denoted by �

↵

for ↵ 2 {w, o, g}
with the notion that the total mobility �

t

is given by �

t

= �

w

+ �

o

+ �

g

. The aqueous and vapor
phase mobilities are functions of their respective saturations and viscosities, while the liquid phase
mobility is a function of both the aqueous and vapor saturations and viscosities. In this paper, we
take the following phase mobilities [21]:
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The water-oil and gas-oil capillary pressures are denoted by p

cwo

and p

cgo

, respectively, and are
defined as the di↵erence in pressure of the respective phases: p

cwo

= p

o

� p
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and p
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� p
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.
Using the notion that these capillary pressures are positive and decreasing, we see that p

0
cwo

< 0
and p

0
cgo

< 0. We consider the following model of capillary pressures [6, 10]:
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Here, the residual saturations are denoted by s

↵r

. For the boundary conditions, we partition @⌦
into several disjoint sets, namely: @⌦ = �
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conditions. For the pressure equation, we have:
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For the saturation equations, we have:
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3 Variational Formulation

We consider a partitioning M
h

of the computational domain ⌦ into triangular elements. Further-
more, we denote the set of interior edges of M

h

by �i

h

. We define the subspace of discontinuous
polynomial basis functions as

V = {v : v|
T

2 P
p

(T ), p > 1, T 2 M
h

}

Here, P
p

(T ) denotes the space of all polynomials of degree p defined on the triangular element T .
For a given edge e 2 �i

h

, we denote its element neighbors by T
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using the convention that
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is the element with the lower global number. Furthermore, we define n
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For the DG variational formulation, we define the jump [·] and average h·i of a function v along an
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3.1 The Heavy Oil Pressure Equation

We first define the auxiliary variables ⇣ = K�
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�r · (K�

t

rp

o

) = �r · ⇣ �r · ⇠ (14)

We multiply by a test function v 2 V and integrate by parts. Summing over all of the elements in
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Here, (·)⇤ denotes the numerical upwind flux, defined on a given edge e 2 �i

h

by:
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Additionally, ✏ and � are parameters that denote the variant of the DG method. For ✏ = 1 and
� > 0, we have the NIPG method. For ✏ = �1 and � > 0, we have the SIPG method. Lastly,
✏ = 0 and � > 0 yields the IIPG method. We will allow these parameters to vary in our numerical
simulations.

3.2 The Water Saturation Equation

We define the auxiliary variables � and ↵:
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We again multiply by a test function w 2 V, integrate by parts, and sum over the elements and
edges to obtain:
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Here, (�
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)⇤ denotes the numerical upwind flux again.

3.3 The Light Oil Saturation Equation

We define the auxiliary variables ⇤ and �:
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and rewrite (2) as follows:
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We again multiply by a test function z 2 V and integrate by parts and sum over the elements and
edges to obtain:
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Here, (�
g
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)⇤ denotes the numerical upwind flux again.

4 Fully Discrete Scheme

For the saturation equations, we discretize the transient term using the backward Euler method.
We denote the solutions at the kth time step by (pk
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For the oil pressure equation, we time lag the saturations, e↵ectively linearizing the source terms

and di↵usion coe�cients. For the water saturation equation, we time lag the coe�cients using the
values of the heavy oil pressure and light oil saturations, but the equation is kept nonlinear with
respect to the water saturation equation. Similarly, the light oil saturation is kept nonlinear with
respect to the light oil saturation unknown, while using the computed values for the oil pressure
and water saturation from the previous steps. At each time step, we resolve the nonlinearity using
Newton’s method. Given (pk

o

, s

k

w

, s

k

g

) 2 V ⇥ V ⇥ V, we seek (pk+1

o

, s

k+1

w

, s

k+1

g

) 2 V ⇥ V ⇥ V such that
for all (v, w, z) 2 V ⇥ V ⇥ V , we have:

X

T2Mh

Z

T

K�

t

(sk
w

, s

k

g

)rp

k+1

o

·rv �
X

e2�

i
h[�p

1

Z

e

hK�

t

(sk
w

, s

k

g

)rp

k+1

o

· n
e

i[v]+

✏

X

e2�

i
h[�p

1

Z

e

hK�

t

(sk
w

, s

k

g

)rv · n
e

i[pk+1

o

] +
X

e2�

i
h[�p

1

�

|e|

Z

e

[pk+1

o

][v] =
X

T2Mh

Z

T

rv · ⇣k�

X

e2�

i
h[@⌦

Z

e

�
⇣k

�⇤ · n
e

[v]�
X

T2Mh

Z

T

rv · ⇠k �
X

e2�

i
h[@⌦

Z

e

�
⇠k
�⇤ · n

e

[v]+

X

e2�p
1

Z

e

✓
✏K�

t

(sk
w

, s

k

g

)rv · n
e

+
�

|e|v
◆
p

o,D

(20)

and

X

T2Mh

1

�t

Z

T

�s

k+1

w

w +
X

T2Mh

Z

T

K↵(sk+1

w

, s

k

g

)rs

k+1

w

·rw+

X

e2�

i
h[�s

1

Z

e

⌦
K↵(sk+1

w

, s

k

g

)rs

k+1

w

· n
e

↵
[w] + ✏

X

e2�

i
h[�s

1

Z

e

⌦
K↵(sk+1

w

, s

k

g

)rw · n
e

↵
[sk+1

w

]+

5



X

e2�

i
h[�s

1

�

|e|

Z

e

[sk+1

w

][w]�
X

T2Mh

Z

T

rw · �

w

(sk+1

w

)

�

t

(sk+1

w

, s

k

g

)
�(pk+1

o

, s

k

w

, s

k

g

)+

X

e2�

i
h[@⌦

Z

e

 
�

w

(sk+1

w

)

�

t

(sk+1

w

, s

k

g

)

!⇤

h�(pk+1

o

, s

k

w

, s

k

g

) · n
e

i[w] =
X

T2Mh

1

�t

Z

T

�s

k

w

w

+
X

e2�s
1

Z

e

✓
✏K↵(sk+1

w

, s

k

g

)rw · n
e

+
�

|e|v
◆
s

w,D

(21)

and

X

T2Mh

1

�t

Z

T

�s

k+1

g

z +
X

T2Mh

Z

T

K�(sk+1

w

, s

k+1

g

)rs

k+1

g

·rz+

X

e2�

i
h[�s

1

Z

e

⌦
K�(sk+1

w

, s

k+1

g

)rs

k+1

g

· n
e

↵
[z] +

X

e2�

i
h[�s

1

Z

e

⌦
K�(sk+1

w

, s

k+1

g

)rz · n
e

↵
[sk+1

g

]+

X

e2�

i
h[�s

1

�

|e|

Z

e

[sk+1

g

][z]�
X

T2Mh

Z

T

rz ·
�

g

(sk+1

g

)

�

t

(sk+1

w

, s

k+1

g

)
⇤(pk+1

o

, s

k+1

w

, s

k

g

)+

X

e2�

i
h[@⌦

Z

e

 
�

g

(sk+1

g

)

�

t

(sk+1

w

, s

k

g

)

!⇤

h⇤(pk+1

o

, s

k+1

w

, s

k

g

) · n
e

i[z] =
X

T2Mh

1

�t

Z

T

�s

k

g

z

+
X

e2�s
1

Z

e

✓
✏K�(sk+1

w

, s

k+1

g

)rz · n
e

+
�

|e|v
◆
s

g,D

(22)

5 Numerical Results

5.1 Homogeneous Medium

For the first numerical simulation, we consider a square kilometer computational domain ⌦ =
[0 m, 1000 m]2. We take the residual saturations s

wr

= 0 and s

or

= 0. We take the following
viscosities:

µ

w

= 0.0001
kg

m · s µ

o

= 0.0005
kg

m · s µ

g

= 0.00001
kg

m · s
We consider a uniform mesh of 2048 triangular elements with K = 10�10 m2 and � = 0.2 for all
(x, y) 2 ⌦. We define the left and right boundaries to be the Dirichlet boundaries as follows:

p

o

(x = 0 m) = 19.0 MPa p

o

(x = 1000 m) = 15.0 MPa

s

w

(x = 0 m) = 0.82 s

w

(x = 1000 m) = 0.30

s

g

(x = 0 m) = 0.11 s

g

(x = 1000 m) = 0.54

We first use the NIPG method with � = 1.0. We take p 2 {1, 2, 3, 4} and a time step of�t = 0.1 days.
The saturation profiles after 100 days are given in Figure 1.

We see that quadratic basis functions o↵er a significant increase in accuracy over linear basis
functions. Cubic and quartic basis functions o↵er a further, but less noticeable increase in accuracy.

5.2 Inhomogeneous Medium

For the second numerical simulation, we use the same parameters as in the first simulation but
imbed a large impermeable region ⌦

K

✓ ⌦ where K = 10�13 m2. We take ⌦
K

= [250 m, 750 m]2.
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Figure 1: A comparison of the saturation profiles for p 2 {1, 2, 3, 4} after 100 days.

We consider a mesh of 9800 triangular elements that is refined greatly in a small region around
@⌦

K

as shown in Figure 2. We use the NIPG method with � = 1.0. We take a time step of
�t = 0.1 days. The two-dimensional pressure and saturation contours at 113 and 226 days are given
in Figures 3 and 4 for the piecewise quadratic approximations (p = 2). The pressure and saturation
profiles along the line y = 500 m are given in Figures 5 and 6.

We see that the scheme is able to accurately capture the impermeable regions. Furthermore, the
solution at the boundary of ⌦

K

remains sharp and well-pronounced; there is very little overshoot
and undershoot and no slope limiters are required. The semi-implicit scheme allows us to take
a relatively large time step and still obtain a stable solution. Newton’s method always converges
within 2 to 3 iterations using a tolerance of 10�11 for this example.

Next, we consider varying the degree of the polynomial basis functions. We take � = 1.0,
�t = 1.0 days, and p 2 {1, 2, 3}. The saturation profiles along the midline y = 500 m after 110 days
are given in Figure 7. The saturation profiles along the upper edge of the domain after 110 days are
given in Figure 8. We see that although each basis is able to e↵ectively capture the behavior of the
region of lower permeability in the center of the domain, the behavior in the vicinity of @⌦ varies
considerably. For p = 1, spurious oscillations and significant overshoot and undershoot can be seen.
As we increase the order of the basis to p = 2, 3, we see a much smoother solution.

5.3 Convergence Study

We test the numerical convergence of the scheme by (1) varying the mesh size and (2) varying the
degree of the polynomial basis functions. We consider a 120⇥54 cell cut of the 30th vertical layer of
the permeability field from the data in [11]. We fix the porosity to be 0.20 throughout the domain.
We first consider the e↵ect of h-refinement on the solution. We consider three partitions of the
computational domain ⌦ = [0 m, 1000 m] ⇥ [0 m, 500 m]: M

1

, M
2

, and M
3

consisting of 4,096,
16,384, and 65,536 uniform triangular elements, respectively. The permeability field is upscaled to
adhere to the coarsest mesh, M

1

, as shown in Figure 9. The permeability varies over six orders of
magnitude.

The two-dimensional pressure and saturation contours after 65 days are given in Figures 10-12.
The one-dimensional saturation profiles along y = 100 m are given in Figure 13. We see that there
is relatively little variance among the solutions on each mesh.

Next, we consider the e↵ect of p-refinement on the solution. Namely, we fix the mesh to contain
16,384 uniform triangular elements as in M

2

and take p 2 {1, 2, 3}.
The two-dimensional pressure and saturation contours after 65 days are given in Figures 14-16.

The one-dimensional saturation profiles along y = 100 m are given in Figure 17. We see again that
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Figure 2: The refined mesh for the second example of a inhomogeneous medium with ⌦
K

=
[250 m, 750 m]2.

Heavy Oil Pressure Heavy Oil Pressure

Figure 3: The two-dimensional pressure contours at 113 (left) and 226 (right) days for the example
on an inhomogeneous medium using NIPG with � = 1.0 and p = 2.
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Light Oil Saturation Light Oil Saturation

Figure 4: The two-dimensional saturation contours at 113 (left) and 226 (right) days for the example
on an inhomogeneous medium using NIPG with � = 1.0 and p = 2.

Figure 5: The pressure profile along y = 500 at 113 days for the example on an inhomogeneous
medium using NIPG with � = 1.0 and p = 2.
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Figure 6: The saturation profiles along y = 500 at 113 days for the example on an inhomogeneous
medium using NIPG with � = 1.0 and p = 2.
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Figure 7: A comparison of the saturation profiles along y = 500 m for p 2 {1, 2, 3} after 110 days.

0 200 400 600 800 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

W
a

te
r 

Sa
tu

ra
ti
o

n

Water Saturation Profile Along y=1000 m

 

 
p=1
p=2
p=3

Figure 8: A comparison of the saturation profiles along y = 1000 m for p 2 {1, 2, 3} after 110 days.
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Figure 9: The permeability field corresponding to M
1

for the h-convergence study.

Heavy Oil Pressure Heavy Oil Pressure

Heavy Oil Pressure

Figure 10: The two-dimensional pressure contours at 65 days for the convergence study example on
M

1

(top), M
2

(middle), and M
3

(bottom) using NIPG with � = 1.0 and p = 2.

there is relatively little variance among the solutions. However, it should be noted that the solution
for p = 1 varies more than between p = 2 and p = 3.

Lastly, we consider the same problem on M
2

with p = 2. We compare the solutions using NIPG
and SIPG with � = 1.0 after 65 days. The saturation profiles are given in Figure 18. We see that
there is little di↵erence between the solutions regardless of the variant of DG method that is used.

5.4 Local Mass Conservation

We now consider the local mass balance in our numerical scheme. The mass loss for the phase
saturations on element T at the k

th time step are given by:

E

k

s

o

,T

=
1

�t

Z

T

�

�
s

k

o

� s

k�1

o

�
+

Z

@T

�
uk

o

· n
e

 
(23)
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Figure 11: The two-dimensional water saturation contours at 65 days for the convergence study
example on M

1

(top), M
2

(middle), and M
3

(bottom) using NIPG with � = 1.0 and p = 2.

Light Oil Saturation Light Oil Saturation

Light Oil Saturation

Figure 12: The two-dimensional light oil saturation contours at 65 days for the convergence study
example on M

1

(top), M
2

(middle), and M
3

(bottom) using NIPG with � = 1.0 and p = 2.
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Figure 13: The one-dimensional saturation contours at 65 days for the convergence study example
on M

1

(solid line), M
2

(dashed line), and M
3

(dotted line) using NIPG with � = 1.0 and p = 2.

Heavy Oil Pressure Heavy Oil Pressure

Heavy Oil Pressure

Figure 14: The two-dimensional pressure contours at 65 days for the convergence study example on
M

2

using NIPG with p = 1 (top), p = 2 (middle), and p = 3 (bottom) and � = 1.0.
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where the individual phase velocities are given by:
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We compute the mass loss for the simulations given in Section 5.3 for the choice of �t = 1.0 day.
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Figure 15: The two-dimensional water saturation contours at 65 days for the convergence study
example on M

2

using NIPG with p = 1 (top), p = 2 (middle), and p = 3 (bottom) and � = 1.0.

Light Oil Saturation Light Oil Saturation

Light Oil Saturation

Figure 16: The two-dimensional light oil saturation contours at 65 days for the convergence study
example on M

2

using NIPG with p = 1 (top), p = 2 (middle), and p = 3 (bottom) and � = 1.0.

The final time is t
s

= 65.0 days. The mass loss at each time step is given in Figure 19 for piecewise
linear and quadratic solutions.
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Figure 17: The one-dimensional saturation contours at 65 days for the convergence study example
on M

2

using NIPG with p = 1 (solid line), p = 2 (dashed line), and p = 3 (dotted line) and � = 1.0.
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Figure 18: The one-dimensional saturation contours at 65 days for the convergence study example
on M

2

using NIPG (solid line) and SIPG (dashed line) with p = 2 and � = 1.0.

We see that the mass loss is small as we expect of the DG scheme: it is of the order of 10�5 for
the water and light oil saturations, and of the order of 10�7 for the oil saturation. The maximum
mass loss for each phase over all mesh elements and time steps is given in Table 1.

p = 1 p = 2
max

k

max
T

E

k

s

o

,T

4.4698⇥ 10�7 9.4353⇥ 10�7

max

k

max
T

E

k

s

w

,T

5.2374⇥ 10�5 6.2000⇥ 10�5

max

k

max
T

E

k

s

g

,T

8.9670⇥ 10�5 7.2000⇥ 10�5

Table 1: The maximum mass loss over all time steps and mesh elements for the phase saturations
after 65 days using NIPG with p 2 {1, 2} and � = 1.0.
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Figure 19: The mass loss for the heavy oil, water, and light oil saturations for the SPE 10 benchmark
problem using p 2 {1, 2} and �t = 1.0 day.
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Figure 20: The permeability field and porosity field for the first SPE 10 benchmark example.

5.5 Heterogeneous porosity and permeability

Next, we test the scheme using input data from the SPE 10 benchmark problem [11]. Namely, we
consider two-dimensional slices of the provided three-dimensional permeability and porosity fields.
There are regions in the domain for which the porosity degenerates.

For the first test, we take a 120 ⇥ 54 cell cut of the 30th vertical layer of the permeability field
and porosity field. A visualization of the permeability and porosity fields is given in Figure 20. The
upper portion of this field represents a Tarbert formation while the lower portion represents a fluvial
Upper Ness region. The Tarbert formation has more discontinuous geological features than Upper
Ness. The porosity field is also piecewise discontinuous and varies from 0 to 46.7%. We consider the
computational domain ⌦ = [0 m, 1000 m] ⇥ [0 m, 500 m] and partition the domain into a uniform
mesh of 16,384 triangular elements. We point out that the porosity is zero for 208 triangles. We use
the NIPG method with � = 1.0 and p = 3. A time step of �t = 0.1 days is used.

The two-dimensional pressure and saturation contours after 102 days are given in Figure 21. We
see that the scheme is able to accurately capture a highly varying permeability field across six orders
of magnitude. The saturation contours clearly show the phase displacement is more homogeneous in
the bottom region than in Tarbet formation. Newton’s method converges in 3 to 5 iterations with a
tolerance of 10�11. We find that using a sequential semi-implicit solution method allows us to take
relatively large time steps while still maintaining stability.

For the second test, we take a 220⇥ 60 cell cut of the 45th horizontal layer of the permeability
and porosity fields. That layer exhibits di↵erent geological features than the one for the first test.
The domain contains trends, i.e. regions with larger permeability and porosity values, which can
associated to fracture-like features. Visualizations of the permeability and porosity fields are given
in Figure 22. The porosity field is also piecewise discontinuous and varies from 0 to 40%.

We again consider the computational domain ⌦ = [0 m, 1000 m] ⇥ [0 m, 500 m] and partition
the domain into a uniform mesh of 16,384 triangular elements. For this test case, 640 elements have
zero porosity and they are grouped together in the geological features. We use the NIPG method
with � = 1.0 and p = 2. A time step of �t = 0.1 days is used. The number of Newton iterations
for convergence is initially equal to 6, and then it decreases to 3. The two-dimensional pressure and
saturation contours after 150 days are given in Figure 23.

These numerical results show robustness of the semi-implicit scheme of second and third order,
for highly varying permeability and porosity fields. Because of the discontinuous approximations,
the numerical method easily handles degenerate porosity fields.

6 Conclusions

In this work we show the potential of using polynomial approximation of degree up to four for
solving an incompressible three-phase flow problem in heterogeneous media. We observe that (i) the
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Heavy Oil Pressure Water Saturation

Light Oil Saturation

Figure 21: The two-dimensional pressure and saturation contours at 102 days for the first SPE 10
example using piecewise cubic approximations.

Figure 22: The permeability field and porosity field for the second SPE 10 benchmark example.

numerical mass errors are negligible; (ii) the semi-implicit algorithm stabilizes the solution enough
that no slope limiters are required; and (iii) the method converges as the polynomial degree increases
even for cases of highly varying discontinuous permeability and porosity fields. In a future work, we
would investigate the black-oil problem, which is a three-phase flow with mass transfer between the
phases.
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