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Abstract15

We investigate whether or not the default ocean-atmosphere turbulent flux algorithm in16

the Energy Exascale Earth System Model version 2 (E3SMv2) converges to unique surface17

fluxes. We demonstrate that under certain conditions (i) discontinuities in the underlying18

equations result in the lack of a solution for the algorithm to converge to, and (ii) more19

than one set of surface fluxes may satisfy the aforementioned equations, some of which may20

have non-physical interpretation. These issues underpinning the theoretical foundations of21

the parameterization have significant impacts on the accuracy and convergence of turbulent22

fluxes in E3SM.23

We address issues of non-existence and non-uniqueness of surface fluxes in E3SM’s de-24

fault algorithm by (a) regularizing discontinuous exchange coefficients to enforce continuity25

and allow the algorithm to converge to a solution of the underlying equations, and (b) uti-26

lizing an adaptive procedure for selecting limiting values of the Monin-Obukhov length to27

ensure the underlying equations have a unique solution. The proposed revisions result in28

significant changes to model latent and sensible heat fluxes which are most notable in boreal29

winter in the Northern Hemisphere.30

Plain Language Summary31

The ability of Earth system models to provide accurate predictions of climatological32

phenomena depends in part on accurately modeling interactions of the Earth’s atmosphere33

and oceans. These interactions are encompassed by surface fluxes which represent the ex-34

change of heat and momentum between the Earth’s atmosphere and oceans. This work35

focuses on a set of equations commonly utilized in Earth system models such as the Energy36

Exascale Earth System Model version 2 (E3SMv2) to compute ocean-atmosphere surface37

fluxes and demonstrates that under certain circumstances, these equations can have no solu-38

tion or more than one solution. The currently used formulation for solving these equations39

in E3SM has no safeguards in place for detecting when these undesired scenarios occur and40

thus returns non-physical solutions with large residual errors in these scenarios. We pro-41

pose several modifications to this formulation for solving these ocean-atmosphere interaction42

equations in E3SM which ensure that a unique solution exists, thereby improving accuracy43

of the surface fluxes and ensuring interpretability of the surface flux algorithms.44
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1 Introduction45

An accurate calculation of ocean-atmosphere surface fluxes, which affect both the at-46

mosphere and the ocean, is crucial to Earth system modeling. Since such fluxes occur at47

spatial and temporal scales that are much smaller than those of a typical Earth system48

model (ESM) grid cell (∼ 1◦ × 1◦), surface turbulent flux algorithms are employed to re-49

late these fluxes to the large-scale mean quantities (lowest atmospheric layer wind speed,50

temperature, and specific humidity, as well as sea surface temperature) that are resolved51

dynamically. Generally, surface wind stress (τ), sensible heat flux (SH), and latent heat flux52

(LH) are related to these mean quantities thusly (Brunke et al., 2002, 2003):53

τ = ρaCDSU, SH = ρaCpCHS(θs − θa), LH = ρaLvCES(qs − qa), (1)

where ρa is air density; Cp is the specific heat of air; Lv is the latent heat of vaporization;54

U is the wind speed; S is the wind speed plus wind gustiness if considered (S = U if it is55

not considered); θs is the sea surface potential temperature; θa is the potential temperature56

of the lowest layer of the atmosphere model; qs is the sea surface specific humidity; qa is the57

lowest atmosphere model layer specific humidity; and CD, CH , and CE are the turbulent58

exchange coefficients for momentum, heat, and humidity, respectively.59

Through Monin-Obukhov similarity theory (MOST) (Monin & Obukhov, 1954), one60

may derive alternative expressions for the exchange coefficients which are dependent on61

scaling parameters, u∗, θ∗, and q∗:62

CD =
u2∗
SU

, CH = − u∗θ∗
S(θs − θa)

, CE = − u∗q∗
S(qs − qa)

. (2)

The surface wind stress and sensible and latent heat fluxes may then be expressed as63

τ = ρau
2
∗, SH = −ρaCpu∗θ∗, LH = −ρaLvu∗q∗. (3)

The scaling parameters u∗, θ∗, and q∗ must be determined iteratively since they are implicitly64

defined using stability functions that account for the effect of convective (in)stability on65

vertical fluxes. These stability functions are dependent on the stability parameter ζ which66

is a function of the scaling parameters and defined by67

ζ(u∗, θ∗, q∗) = z/L(u∗, θ∗, q∗), (4)

where z is the height above the surface and L is the Monin-Obukhov length68

L(u∗, θ∗, q∗) =
u2∗θv

kgθv∗(θ∗, q∗)
.
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Here, θv is the virtual potential temperature such that θv = θa(1 + 0.61qa) and θv∗ is the69

virtual potential temperature scaling parameter defined as θv∗(θ∗, q∗) = θ∗(1 + 0.61qa) +70

0.61θaq∗. The constants k and g denote the von Kármán constant and standard acceleration71

of gravity, respectively.72

All ocean-atmosphere turbulent flux parameterizations are based on either (1) or (3).73

However, there are key differences in assumptions underlying such parameterizations, for74

instance the range of surface conditions for which the parameterization is valid, whether75

wind gustiness is included, and whether a 2% reduction in humidity saturation at the ocean76

surface is assumed (Zeng et al., 1998; Brunke et al., 2002, 2003). A number of studies have77

quantified sensitivities of Earth system models to ocean-surface flux calculations (Harrop et78

al., 2018; W. G. Large & Caron, 2015; Zeng & Beljaars, 2005) as well as sensitivities to the79

choice of turbulent flux parameterization (Reeves Eyre et al., 2021).80

Underpinning much of the prior analysis of turbulent flux parameterizations is the81

assumption that they are well-posed, that is, the underlying equations associated with the82

parameterization can be solved to obtain unique scaling parameters and surface fluxes. To83

the best of our knowledge, there has been no systematic analysis carried out to ascertain84

whether or not the aforementioned parameterizations can actually be solved uniquely for85

the surface fluxes. Instead, in many Earth system models, numerical methods are applied86

indiscriminately to approximate the surface fluxes without consideration of whether or not87

the approximated quantities actually satisfy the underlying equations.88

In this study, we establish basic results on well-posedness, or lack thereof, for a par-89

ticular ocean-atmosphere turbulent flux parameterization. We consider the default ocean-90

atmosphere turbulent flux parameterization based on the work of W. Large & Pond (1982)91

in the Energy Exascale Earth System Model version 2 (E3SMv2) (Golaz et al., 2019) but92

also discuss where the analysis in the present work applies to other turbulent flux algorithms93

as well. The aim of this study is to establish:94

1. Whether or not there always exists a solution to the equations underlying theW. Large95

& Pond (1982) turbulent flux parameterization. We demonstrate that lack of solution96

existence is an issue that occurs in this parameterization due to discontinuities of some97

exchange coefficients. In this scenario, the computed surface fluxes introduce large98

errors that are then propagated into the ocean and atmosphere models.99
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2. Whether or not a solution to the equations underlying the turbulent flux parame-100

terization (if it exists) is unique. We demonstrate that under certain atmospheric101

conditions there are multiple surface fluxes which satisfy the aforementioned equa-102

tions, some of which have a non-physical interpretation. Moreover, the default E3SM103

parameterization may converge to these non-physical surface fluxes under certain cir-104

cumstances, thereby introducing significant approximation error which is again prop-105

agated to the ocean and atmosphere models. We also demonstrate that the number106

of surface fluxes satisfying the underlying turbulent flux parameterization is strongly107

influenced by ad hoc limiters utilized in E3SM to restrict the Monin-Obukhov length108

to a desired range.109

The analysis in this work is substantiated with model runs from E3SMv2 which demonstrate110

how these mathematical issues manifest in practice. Based on our analysis, we present111

several techniques to ensure that the turbulent flux parameterization is well-posed. These112

include regularization techniques to address discontinuous coefficients that prevent solution113

existence and an adaptive adjustment to Monin-Obukhov length limiters to ensure solution114

uniqueness.115

The rest of this work is presented as follows. In Section 2, we provide an overview116

of ocean-atmosphere surface flux algorithms in E3SMv2. In Section 3 we analyze issues of117

well-posedness in the aforementioned algorithms and prescribe modifications to ensure well-118

posedness. Section 4 includes a sensitivity analysis of E3SM to the proposed modifications,119

followed by conclusions in Section 5.120

2 Methodology121

In this section, we describe the default ocean-atmosphere turbulent flux parameter-122

ization in E3SM and the numerical methods used to compute the turbulent fluxes. An123

analysis of the lack of mathematical well-posedness of the turbulent flux parameterization124

is presented followed by introduction of techniques to alleviate these issues.125

The following terminology shall be used frequently hereafter. Of particular note is that126

we make a distinction between the turbulent flux parameterization and the turbulent flux127

algorithm.128
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• Turbulent flux parameterization: the equations that describe the scaling parameters,129

u∗, θ∗, and q∗, i.e. (8) in Section 2.2.130

• Turbulent flux algorithm or iterative method : the numerical method used to compute131

a solution of the turbulent flux parameterization, e.g. Algorithm 1 in Section 2.2.132

Such an algorithm/method is called convergent if the iterates converge to a solution133

of the parameterization.134

• Equations underlying the turbulent flux algorithm: the turbulent flux parameteriza-135

tion.136

• Existence of a solution (to the underlying equations): at least one solution can be137

determined which satisfies the equations underlying the turbulent flux algorithm.138

• Uniqueness of a solution (to the underlying equations): exactly one solution satisfies139

the equations underlying the turbulent flux algorithm.140

• Well-posed equation or parameterization: an equation or set of equations for which141

there exists a unique solution.142

2.1 E3SM Model143

The E3SMv2 is the Earth system model developed by the U.S. Department of Energy144

(Golaz et al., 2019) that includes components for the atmosphere, ocean, sea ice, ice sheets,145

and rivers. In this study, we run E3SMv2 for 10 model years with active atmosphere,146

land, and rivers. External forcing conditions including sea surface temperatures and sea ice147

fraction, aerosol emissions, etc. are specified using the climatological mean of 2005–2014 with148

repeating annual cycles. We refer to such simulations as F2010 following E3SM’s naming149

convention for model configurations. The atmosphere model, the E3SMv2 Atmosphere150

Model (EAMv2), has undergone a number of changes and tuning from v1 to v2 (Xie et al.,151

2018; Ma et al., 2022).152

We produce two different F2010 simulations: CTRL, which uses the default ocean-153

atmosphere flux algorithm (see Section 2.2, Algorithm 1), and SENS, which uses the al-154

gorithm developed in this work that ensures that the parameterization is well-posed (see155

Section 3.5, Algorithm 3). In these simulations, we employ the CondiDiag tool (Wan et al.,156

2022) to obtain daily instantaneous output of near-surface and surface quantities to use as157

input for offline turbulent flux calculations and analysis.158
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2.2 Ocean-atmosphere turbulent flux algorithm159

The focus of this work is on the default ocean-atmosphere exchange algorithm (W. Large160

& Pond, 1982) in E3SM inherited from the Community Earth System Model (CESM) (Hur-161

rell et al., 2013). An initial estimate of the scaling parameters is made assuming neutral162

stability:163



u∗ = CDN (U) · U

u10N = U

θ∗ = CHN (∆θ) ·∆θ

q∗ = CEN ·∆q,

(5)

where ∆θ = θa−θs, ∆q = qa−qs, and CDN , CHN , and CEN are neutral exchange coefficients164

defined as follows. The neutral momentum exchange, or drag, coefficient CDN is determined165

from the 10-m neutral wind speed u10N using an empirical expression derived in W. G. Large166

& Pond (1981):167

CDN (u10N ) =
0.0027

u10N
+ 0.000142 + 0.0000764u10N .

The remaining neutral exchange coefficients are defined as168

CHN (ζ) =


0.0327, if ζ < 0

0.018, if ζ > 0,

CEN = 0.0346.

Two additional iterations are made accounting for the effects of stability and to shift169

the exchange coefficients up to measurement height. Therefore, the non-neutral exchange170

coefficients are derived from the neutral exchange coefficients:171

CD(u10N , ζ(u∗, θ∗, q∗)) =

√
CDN (u10N )

1 +

√
CDN (u10N )

k [ln( z
10 )− ψm(ζ(u∗, θ∗, q∗))

CH(ζ(u∗, θ∗, q∗)) =
CHN (ζ(u∗, θ∗, q∗))

1 + CHN (ζ(u∗,θ∗,q∗))
k [ln( z

10 )− ψh(ζ(u∗, θ∗, q∗))]

CE(ζ(u∗, θ∗, q∗)) =
CEN

1 + CEN

k [ln( z
10 )− ψq(ζ(u∗, θ∗, q∗))]

,

(6)

where ψm, ψh, and ψq are the stability functions for momentum, heat, and humidity, re-172

spectively. The stability functions are defined piecewise for stable and unstable conditions173
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as174

ψm(ζ) =


ln

(
[1 + χ(ζ)(2 + χ(ζ))](

1 + χ(ζ)2

8
)

)
− 2 tan−1 χ(ζ) +

π

2
, ζ ⩽ 0

−5ζ, ζ > 0

ψh(ζ) = ψq(ζ) =


ln(

1 + χ2(ζ)

2
), ζ ⩽ 0

−5ζ, ζ > 0,

where χ(ζ) = (1− 16ζ)1/4.175

The default turbulent flux parameterization in E3SM applies a limiter to prevent the176

magnitude of ζ from growing too large. The limited stability parameter, which we denote177

by ζ̃, is defined by178

ζ̃(u∗, θ∗, q∗; ζmax) = min{|ζ(u∗, θ∗, q∗)|, ζmax} · sgn(ζ(u∗, θ∗, q∗)). (7)

We refer to the parameter ζmax > 0 as the limiting parameter. Its value is set to 10 in179

the default turbulent flux algorithm. A detailed analysis of the stability limiter and its180

relationship with uniqueness of solutions of (8) is provided in Section 3.5.1.181

Algorithm 1 summarizes the default ocean-atmosphere turbulent flux algorithm in182

E3SM. Of particular note is that the neutral 10-m wind speed is updated first, followed183

by simultaneous updates to the scaling parameters. Additionally, with numerical methods184

such as the one described in Algorithm 1, a common practice for evaluating when to stop185

performing more iterations is to verify whether the relative residual |yn+1− yn|/|yn|, where186

y ∈ {u∗, u10N , θ∗, q∗}, is within a desired tolerance or the number of iterations has reached187

a specified maximum. In contrast, the default E3SM ocean-atmosphere turbulent flux algo-188

rithm described in Algorithm 1 always performs two iterations. No checks of the residuals189

are performed to ascertain whether convergent behavior is observed and the residual is190

acceptably small.191

The system of equations iteratively solved by Algorithm 1, which we call the turbulent192

flux parameterization, can be summarized as193 

u∗ = CD(u10N , ζ(u∗, θ∗, q∗)) · U

u10N =
CD(u10N , ζ(u∗, θ∗, q∗))√

CDN (u10N )
· U

θ∗ = CH(ζ(u∗, θ∗, q∗)) ·∆θ

q∗ = CE(ζ(u∗, θ∗, q∗)) ·∆q.

(8)
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Algorithm 1 Default atmosphere-ocean iteration in E3SM.

Input: Bulk variables U , ∆θ, and ∆q and limiting parameter ζmax.

Output: Approximation (u∗)n, (u10N )n, (θ∗)n, and (q∗)n to the turbulent flux param-

eterization (8).

1: procedure DefaultIteration(U , ∆θ, ∆q, ζmax)

2: Compute the initial estimate based on neutral conditions

(u10N )0 = U

(u∗)0 =
√
CDN (U) · U

(θ∗)0 = CHN (∆θ) ·∆θ

(q∗)0 = CEN ·∆q

3: Compute limited stability parameter ζ̃0 = ζ̃((u∗)0, (θ∗)0, (q∗)0; ζmax) according to

(7).

4: for n = 1, 2 do

5: Update 10-m neutral wind speed:

(u10N )n =
CD((u10N )n−1, ζ̃n−1)√

CDN ((u10N )n−1)
· U

6: Apply updated 10-m neutral wind speed to simultaneously update scaling pa-

rameters: 
(u∗)n

(θ∗)n

(q∗)n

 =


CD((u10N )n, ζ̃n−1) · U

CH(ζ̃n−1) ·∆θ

CE(ζ̃n−1) ·∆q

 .

7: Update stability parameter ζ̃n = ζ̃((u∗)n, (θ∗)n, (q∗)n; ζmax).

8: end for

9: return (u∗)n, (θ∗)n, (q∗)n.

10: end procedure

We note here that (8) shifts the 10-m neutral transfer coefficients to the height and stability194

of the atmospheric state variables (W. B. Large, 2006). The system (8) may be written in195

the form196

x = f(x) (9)
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where x = (u∗, u10N , θ∗, q∗)
T and f is the vector-valued function on the right-hand side197

of (8). Solutions of (9) are known as fixed points of the function f . At such points, the198

scaling parameters u∗, θ∗, q∗, and neutral 10-m wind speed u10N are unchanged under the199

transformation f . No closed form solution of (8) in terms of elementary functions is currently200

known. Instead, an approximate solution is obtained from an iterative procedure such as201

the one described in Algorithm 1.202

The iterative procedure in Algorithm 1 more generally falls under the framework of203

nonlinear Gauss-Seidel iterations (Ortega & Rockoff, 1966) which produce a sequence of204

iterates {xn} that satisfy205

g(xn+1,xn) = 0 (10)

for a given iteration function, g, with the initial guess, x0, given by neutral 10-m conditions206

as in (5). Given two generic vectors, r, s ∈ R4, the function, g, that corresponds to the207

iteration in Algorithm 1 takes the form208

g(r, s) =



r1 − CD(r2, ζ(s1, s3, s4)) · U

r2 − CD(s2,ζ(s1,s3,s4))√
CDN (s2)

· U

r3 − CH(ζ(s1, s3, s4)) ·∆θ

r4 − CE(ζ(s1, s3, s4)) ·∆q


. (11)

As n → ∞, a desirable property of iterations such as (10) is that the iterates xn converge209

to the true solution of (9), x∗. We shall discuss shortly in Section 3.1 the conditions under210

which such a convergence property can be expected.211

Lastly, we note that taking g(xn+1,xn) := xn+1 − αf(xn) − (1 − α)xn for 0 < α ⩽ 1212

yields the damped fixed point iteration213

xn+1 = αf(xn) + (1− α)xn. (12)

This iteration (12) and its theory are closely related to the nonlinear Gauss-Seidel iteration214

(10). Given the convergence theory for the fixed point iteration is more straightforward215

than for the nonlinear Gauss-Seidel iteration, the related theory for the fixed point iteration216

is presented in Section 3.1 to provide the reader with an understanding of the relevant217

conditions required for (8) to have a solution and for the iteration (10) to converge.218
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3 Analysis219

The well-posedness of a system of equations such as (8) plays a large part in deter-220

mining the convergence (or lack thereof) of numerical methods, such as the one described221

in Algorithm 1, that attempt to approximate solutions to these equations. For example, a222

system with multiple solutions can result in numerical methods oscillating between those223

solutions, and a system with no solutions will effectively ensure no numerical method will224

converge. Thus, it is important that well-posedness of turbulent flux parameterizations be225

analyzed prior to the application of any numerical methods. To the best of our knowledge,226

this analysis has not yet been carried out for the turbulent flux parameterization (8).227

Our analysis consists of two components. The first part, described in Section 3.1,228

answers the question of whether there always exists a solution to the turbulent flux param-229

eterization (8). The second part, described in Section 3.5, answers the question of whether230

a solution to the turbulent flux parameterization is unique.231

3.1 Existence of the scaling parameters232

It will be useful in the proceeding analysis to view the turbulent flux parameterization233

in the form (9). The existence of a solution to (9) is typically proven by appealing to234

established results on contraction mappings. The function f in (9) is a contraction mapping235

if it maps any two distinct points to points that are closer together. Formally, this means236

that there exists 0 < λ < 1 such that237

||f(x)− f(y)|| ⩽ λ||x− y|| (13)

for all x and y. Both existence and uniqueness of a fixed point of f are only guaranteed238

when f is a contraction mapping within some region around the initial iterate x0 (Isaacson239

& Keller, 1994). This result is summarized in Theorem 1. In the case when f is not240

a contraction mapping, existence and uniqueness of a solution to (8) are generally not241

guaranteed.242

Theorem 1 ((Isaacson & Keller, 1994, §3.3 Theorem 1)). Let x0 denote the initial iterate243

to (12) and suppose f is a contraction mapping with constant λ ∈ (0, 1) for all x,y satisfying244

||x− x0|| < ρ, ||y − x0|| < ρ. Suppose also that the initial iterate x0 satisfies245

||f(x0)− x0|| < (1− λ)ρ. (14)

Then for α = 1, the iteration (12) has the following properties.246
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Figure 1: Visualization of (i) contraction mapping and (ii) Theorem 1. If f is a locally

contractive mapping and the initial iterate x1 = f(x0) is within the (1 − λ)r ball centered

at x0, then the sequence xn+1 = f(xn) is guaranteed to converge to a solution x∗.

1. All iterates xn satisfy247

||xn − x0|| ⩽ ρ.

2. The iterates converge to a vector x∗ which is a solution of (9):248

lim
n→∞

xn = x∗, where x∗ = f(x∗).

3. The solution x∗ is the only solution of (9) in ||x− x0|| ⩽ ρ.249

In general, Theorem 1 provides sufficient but not necessary conditions for local exis-250

tence and uniqueness of the fixed point, i.e., a violation of condition (13) or (14) does not251
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Figure 2: Standard fixed point iteration with various values of the damping parameter α

for the function h in (15) which has no fixed points. The iteration oscillates regardless of

choice of method because there is no solution satisfying x = h(x).

necessarily mean that a unique fixed point does not exist. Nevertheless, since the function f252

corresponding to the turbulent flux parameterization (8) contains a jump discontinuity due253

to the discontinuous definition of the exchange coefficient CHN , we note that f can never254

satisfy the contraction property (13). Moreover, we shall demonstrate that this discontinu-255

ity leads in some scenarios to the non-existence of a solution of (8) which manifests in the256

iteration (12) as an oscillating iterate xn.257

Before illustrating the impact of discontinuities in the turbulent flux parameterization258

(8), we first consider a simpler problem which is emblematic of issues encountered in (8).259

Consider computing the fixed points of the simple function260

h(x) =


x+ 1/2, x ⩽ 0

−1/2, x > 0.

(15)

The function h has no fixed points, i.e. x = g(x) has no solutions. Moreover, applying (12)261

with various damping parameters for 100 iterations, we observe that xn oscillates infinitely262

between −1/2 and 1/4. Figure 2 shows a history of the iterate xn as well as a graph of263

h. The oscillations observed in this simple example are indicative of the iteration behavior264

that occurs under certain conditions for the turbulent flux parameterization (8).265

We next turn our attention to the impact of discontinuities in the turbulent flux pa-266

rameterization (8) on convergence of the default E3SM iteration described in Algorithm 1.267

–13–
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The third equation of (8) may be written in expanded form as268

θ∗ =
CHN (ζ)

1 + CHN (ζ)
k (ln(z/10)− ψh(ζ))

∆θ =: f3(ζ). (16)

Figure 3 shows graphs of CHN and f3 as functions of the stability parameter ζ. In general,269

f3 always contains a discontinuity due to the discontinuous behavior of CHN . However,270

issues only arise when the meteorological variables are such that the solution of (8) would271

lie along the discontinuity of f3. One such example arises for the meteorological conditions272

given by273

U = 0.35 m/s, z = 13.36 m, θs = 299.29 K, θa = 299.83 K, qa = 18.85 g/kg. (17)

We apply Algorithm 1 to this example for 100 iterations. For brevity, we only show results274

for the iterate θn and its residual |θn+1−θn|/|θn| (Figure 4) and note that while oscillations275

are present in all solution variables, they are most strongly observed in θ∗ that is derived276

from f3. The relative residual error in θ∗ for this example is approximately 50% and indicates277

that the computed scaling parameters do not satisfy the underlying equations that comprise278

the turbulent flux parameterization (8).279

While the oscillatory results in Figure 4 do not necessarily mean there is no solution280

to (8) for the scenario described by (17), the simple example shown here suggests that the281

oscillations in the iterate xn are possibly caused by the discontinuity in CHN . Indeed, we282

shall demonstrate in Section 3.2 that a small modification to CHN to remove the disconti-283

nuity at ζ = 0 eliminates the oscillations entirely and allows the iteration to converge to a284

solution.285

Figure 3: (left) Neutral exchange coefficient of heat and its regularizations. (right) Iteration

function f3 and its regularizations.
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Figure 4: The iterate θn and the relative residual in |θn+1−θn|/|θn| when approximating the

solution of the turbulent flux parameterization (8) with conditions described by (17). The

iterates are described by Algorithm 1 with the exception that 100 iterations are performed

rather than 2.

Figure 5: A corner plot showing the marginal probability distributions and pairwise scatter

plots of the variables U , ∆θ, and ∆q for both atmospheric conditions that have no solution

and those whose iteration converges to a solution. The U , ∆θ, and ∆q samples used here

are 10 years of daily instantaneous output from the CTRL simulation. The classification

(“converged” versus “no solution”) was done in offline calculations using Algorithm 1 and

100 iterations.
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It is difficult to definitively determine which sets of meteorological variables result in286

Algorithm 1 exhibiting oscillatory behavior. Nevertheless, to provide some insight into the287

conditions which generate the scenario observed in Figure 4, we consider ten years of data288

from the F2010 simulation CTRL, utilizing the CondiDiag tool (Wan et al., 2022) to write289

out daily instantaneous values for the state variables. Using these daily values, we perform290

100 iterations of Algorithm 1, and each data point is classified as either (i) having no solution291

if it exhibits oscillatory behavior or (ii) having converged if the relative residuals for each292

solution field are less than 10−10. The marginal probability distributions for U , ∆θ, and293

∆q are provided in the main diagonal of Figure 5 for both data points with no solution294

and data points that have converged to a solution. Off-diagonal entries show the pairwise295

scatter plots of U , ∆θ, and ∆q for each class of data. The main condition in which there is296

usually a lack of convergence in the solution of (8) is approximately 0 K < ∆θ < 0.7 K.297

With conditions identified in which there might be a lack of convergence in (8), we298

explore how often the model exhibits these conditions. Figure 6 shows the percentage of299

days in which 0 K < ∆θ (between surface and air) < 0.7 K for the months of December,300

January, and February (hereinafter DJF) as well as June, July, and August (hereinafter301

JJA). In DJF, the most frequent occurrences of these conditions are in the Southern Ocean302

along the ice edge. Higher frequencies are also found in the mid-latitude storm tracks over303

the North Atlantic and Pacific Oceans. In JJA, the most frequent occurrences are over the304

North Atlantic and Pacific just south of the ice edge, as well as over the Arabian Sea.305

Figure 6: Percentage of days for which the daily instantaneous output of ∆θ in DJF (left)

or JJA (right) falls in the range of 0 K to 0.7 K in 10 years of the CTRL simulation. Gray

shading indicates land, and white areas are sea ice.
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3.2 Regularization of heat exchange coefficient306

To enforce continuity of the heat exchange coefficient CHN , we propose a simple Ck reg-307

ularization which replaces the jump discontinuity with a polynomial function p
(k)
εreg allowing308

the regularized coefficient, C̃
(k)
HNεreg

, to have k continuous derivatives:309

C̃
(k)
HN,εreg

(ζ) :=


0.0327, ζ ⩽ −εreg

p(k)εreg(ζ), −εreg < ζ ⩽ εreg

0.018, ζ > εreg

, p(k)εreg(ζ) :=

2k+1∑
j=0

ajζ
j , εreg > 0.

The coefficients, aj , are obtained by enforcing the continuity conditions310

p(k)εreg(−εreg) = 0.0327, p(k)εreg(εreg) = 0.018,
djpk,εreg
dζj

∣∣∣∣
ζ=±εreg

= 0, 1 ⩽ j ⩽ k,

which amounts to solving a system of 2k + 2 linear equations. For completeness, we state311

the C0 and C1 polynomials below:312

p(0)εreg(ζ) = 0.02535− 0.00735

εreg
ζ

p(1)εreg(ζ) = 0.02535− 0.011025

εreg
ζ +

0.003675

ε3reg
ζ3.

An example of the regularization for εreg = 1 is shown in Figure 3. With the regularized313

coefficient C̃
(k)
HN,εreg

, we may define the regularized turbulent exchange coefficient C̃
(k)
H,εreg

by314

C̃
(k)
H,εreg

(ζ(u∗, θ∗, q∗)) :=
C̃

(k)
HN,εreg

(ζ(u∗, θ∗, q∗))

1 +
C̃

(k)
HN,εreg

(ζ(u∗,θ∗,q∗))

k [ln( z
10 )− ψh(ζ(u∗, θ∗, q∗))]

(18)

to replace the discontinuous coefficient CH in (8). The regularized turbulent flux parame-315

terization based on the Large and Pond parameterization (8) and the regularization (18) is316

given by317 

u∗ = CD(u10N , ζ(u∗, θ∗, q∗)) · U

u10N =
CD(u10N , ζ(u∗, θ∗, q∗))√

CDN (u10N )
· U

θ∗ = C̃
(k)
H,εreg

(ζ(u∗, θ∗, q∗)) ·∆θ

q∗ = CE(ζ(u∗, θ∗, q∗)) ·∆q.

(19)

The regularization parameter εreg determines how much of the original exchange coef-318

ficient CHN is replaced by the polynomial pk,εreg . In principle, any positive value of εreg319

ensures that the range of f is a connected region in R4 and thus, the oscillatory behavior320

in Algorithm 1 should be avoided. However, in practice, smaller values of εreg will preserve321

more of the original exchange coefficient but may not alleviate the problem of oscillating322
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Figure 7: The iterate θn and the relative residual in |θn+1−θn|/|θn| when approximating the

solution of the regularized turbulent flux parameterization (19) with conditions described

by (17). The value of the regularization parameter is εreg = 0.1. The iterates are described

by the nonlinear Gauss-Seidel iteration (20) with damping parameters chosen from α ∈

{1, 0.5, 0.1}.

iterations due to the sharp gradient associated with small εreg. On the other hand, larger323

values of εreg make it easier for numerical methods to converge to a solution of (19) but324

modify more of the original exchange coefficient. Thus, care must be taken in choosing εreg325

so that the key features of the original exchange coefficient are preserved while also not326

making it onerously difficult for iterative methods to converge to a solution.327

3.3 Damped fixed point iteration for the regularized system328

Convergence of the iteration applied to the regularized parameterization (19) requires329

the use of damping (cf. equation (12)). To see this, we apply a variant of the default330

iteration described in Algorithm 1 which introduces a damping parameter α > 0 to the331

regularized turbulent flux parameterization (19) with εreg = 0.1 for the example described332

by (22). This iteration may be described by the nonlinear system g̃(xn+1,xn) = 0, where333

g̃ is the function334

g̃(r, s) =



r1 − αCD(r2, ζ(s1, s3, s4)) · U − (1− α)s1

r2 − αCD(s2,ζ(s1,s3,s4))√
CDN (t2)

· U − (1− α)s2

r3 − αC̃(k)
H,εreg

(ζ(s1, s3, s4)) ·∆θ − (1− α)s3

r4 − αCE(ζ(s1, s3, s4)) ·∆q − (1− α)s4


. (20)
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We apply the iteration described by (20) with 100 iterations and vary the damping parameter335

from α ∈ {1, 0.5, 0.1} (Figure 7). It is clear that the damped iteration (20) converges to336

the solution of the turbulent flux parameterization (19) so long as the damping parameter337

is chosen carefully. In particular, if α is too large relative to εreg, the oscillations are still338

present at varying levels depending on the value of α chosen.339

3.4 Stopping criterion340

Before presenting the full algorithm for approximating the regularized turbulent flux341

parameterization (19), we discuss convergence criteria for terminating the iterative process.342

The default E3SM iteration in Algorithm 1 takes two iterations before terminating and343

returning the second iterate as the approximation to the scaling parameters. In practice,344

such iterations are typically terminated by utilizing a convergence test and terminating the345

iteration if the convergence test is passed or a maximum number of iterations is taken.346

Given (u∗, u10N , θ∗, q∗), we define the residual347

R(u∗, u10N , θ∗, q∗) :=

√√√√ 4∑
i=1

|ri(u∗, u10N , θ∗, q∗)|2, (21)

where348

r1(u∗, u10N , θ∗, q∗) =
u∗ − CD(u10N , ζ(u∗, θ∗, q∗)) · U

u∗

r2(u∗, u10N , θ∗, q∗) =
u10N − CD(u10N , ζ(u∗, θ∗, q∗))/

√
CDN (u10N ) · U

u10N

r3(u∗, u10N , θ∗, q∗) =
θ∗ − C̃(0)

H,εreg
(ζ(u∗, θ∗, q∗)) ·∆θ
θ∗

r4(u∗, u10N , θ∗, q∗) =
q∗ − CE(ζ(u∗, θ∗, q∗)) ·∆q

q∗

are the component relative residuals for each scaling parameter and may be viewed as the349

relative change from the current iteration to the next iteration. We note here that (21) is350

simply the ℓ2 norm of the component residuals.351
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Algorithm 2 Regularized atmosphere-ocean iteration.

Input: Bulk variables U , ∆θ, and ∆q; limiting parameter ζmax; damping parameter

α ∈ (0, 1]; tolerance tol; maximum iterations maxiter.

Output: Approximation (u∗)n, (u10N )n, (θ∗)n, and (q∗)n to the turbulent flux param-

eterization (19).

1: procedure RegularizedIteration(U , ∆θ, ∆q, ζmax, α, tol, maxiter)

2: Set n = 0.

3: Compute the initial estimate based on neutral conditions

(u10N )n = U

(u∗)n = CDN (U) · U

(θ∗)n = C̃
(0)
HN,εreg

(∆θ) ·∆θ

(q∗)n = CEN ·∆q

4: Compute limited stability parameter ζ̃n = ζ̃((u∗)n, (θ∗)n, (q∗)n; ζmax) according to

(7).

5: while R((u∗)n, (u10N )n, (θ∗)n, (q∗)n) > tol do

6: Increment n← n+ 1.

7: Update 10-m neutral wind speed using regularized coefficients:

(u10N )n = α
CD((u10N )n−1, ζ̃n−1)√

CDN ((u10N )n−1)
· U + (1− α) · (u10N )n−1.

8: Apply updated 10-m neutral wind speed to simultaneously update scaling pa-

rameters using regularized coefficients:
(u∗)n

(θ∗)n

(q∗)n

 = α


√
CD((u10N )n, ζ̃n−1) · U

C̃
(0)
H,εreg

(ζ̃n−1) ·∆θ

CE(ζ̃n−1) ·∆q

+ (1− α)


(u∗)n−1

(θ∗)n−1

(q∗)n−1

 .

9: Update stability parameter ζ̃n = ζ̃((u∗)n, (θ∗)n, (q∗)n.; ζmax).

10: if n > maxiter then

11: Error(“Maximum iterations reached without achieving desired tolerance.”)

12: end if

13: end while

14: return (u∗)n, (θ∗)n, (q∗)n.

15: end procedure
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Given the iterates (u∗)n, (u10N )n, (θ∗)n, and (q∗)n, the convergence test is to check352

whether R((u∗)n, (u10N )n, (θ∗)n, (q∗)n) < tol for a user-prescribed tolerance tol > 0. The353

full algorithm for approximating the scaling parameters described by the turbulent flux354

parameterization (19) is given in Algorithm 2. As is standard with such iterative methods,355

the iteration is terminated and an error message returned to the user if the number of356

iterations exceeds a specified maxiter without achieving the desired tolerance.357

Finally, we briefly comment on the efficiency of the proposed Algorithm 2 compared358

to the E3SM default Algorithm 1. One should not generally expect to obtain a high level359

of accuracy in the scaling parameters (and hence, the surface fluxes as well) using the360

default two iterations in Algorithm 1. On the one hand, practitioners of E3SM and other361

global models might argue that the level of accuracy achieved with two iterations is on par362

with the low level of accuracy obtained in other components of E3SM, for instance, first-363

order time integration and coupling methods (Wan et al., 2021, 2015). On the other hand,364

the recent exploration of higher order time integration techniques to resolve atmospheric365

dynamics (Vogl et al., 2019; Gardner et al., 2018) in conjunction with improvements to366

physics parameterizations and their coupling (Wan et al., 2024; Zhang et al., 2023) in Earth367

system models means that the relatively large approximation errors obtained by Algorithm368

1 may not be sufficient in future updates to E3SM.369

As one might expect, Algorithm 2 is usually (depending on the value of tol) more370

computationally expensive than the default E3SM algorithm. However, we note that Algo-371

rithm 1 comprises a relatively small portion of total computation time in E3SM. Increasing372

the number of iterations performed is not expected to substantially increase the total com-373

putation time. Nevertheless, techniques for accelerating convergence of Algorithm 2 are374

readily available. For example, Anderson acceleration (Anderson, 1965) updates the itera-375

tion by computing a linear combination of m previous iterates and, in many cases, converges376

faster than the standard fixed point and Gauss-Seidel iterations. Efficient implementations377

are available to Fortran codes via software libraries such as SUNDIALS (Hindmarsh et al.,378

2005). To demonstrate the potential benefits of Anderson acceleration, we compute the sur-379

face fluxes in an offline setup for a set of data consisting of meteorological conditions from380

the CTRL simulation every five days over the course of a full year using CondiDiag. Com-381

putation of the surface fluxes is done using both (i) Anderson acceleration from SUNDIALS382

with m = 1 which computes the update xn+1 using the previous iterates xn and xn−1, and383

(ii) the standard fixed point iteration (12) which has the same computational cost as the384
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Figure 8: A demonstration of Anderson acceleration to improve convergence of scaling

parameters. (left) Behavior of the relative residual R((u∗)n, (u10N )n, (θ∗)n, (q∗)n) for ap-

proximating surface fluxes from the parameterization (19) at a single location. (right) Av-

erage residual for meteorological conditions sampled across a year of data from the CTRL

simulation vs. wall clock time. Individual points correspond to fixed point and Anderson

acceleration iterations with maxiters = 2, 5, 10, 100 and tol = 10−14.

default E3SM iteration in Algorithm 1 (Figure 8). We observe that Anderson acceleration385

converges rapidly and also results in significant speed-up in wall clock time in comparison to386

the standard fixed point iteration. For instance, Anderson acceleration attains an average387

relative residual of 10−4 more than three times faster than the standard fixed point itera-388

tion. Thus, even if the additional computational cost of Algorithm 2 is found to be more389

than modest, techniques such as Anderson acceleration can substantially mitigate that cost390

to capitalize on the substantial improvements in solution quality over Algorithm 1.391

3.5 Uniqueness of the scaling parameters392

With some confidence that a solution of (19) exists, we now investigate issues of unique-393

ness of solutions of (19). We focus primarily on the role the stability parameter ζ plays394

in dictating the number of solutions of (19). No matter the value of U , ∆θ, and ∆q, the395

stability functions ψ(m,h,q) are unbounded and satisfy the following property:396

lim
ζ→±∞

ψm(ζ) = lim
ζ→±∞

ψh(ζ) = lim
ζ→±∞

ψq(ζ) = ∓∞.
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Figure 9: Progress of approximating the scaling parameters u∗, θ∗, and q∗ and 10-m

wind speed u10N in Algorithm 2 without stability limiter. Each dashed line represents

an application of Algorithm 2 with an initial guess drawn randomly from a uniform dis-

tribution. Depending on the initial guess, the iterations converge to two solutions, a

trivial one at (u∗, u10N , θ∗, q∗) = (0, 0, 0, 0) and a non-trivial solution (u∗, u10N , θ∗, q∗) =

(0.0288, 0.303,−0.000142, 0.0281).

Thus, the coefficients CD, C̃
(k)
H,εreg

, and CE as defined in (6) and (18) satisfy397

lim
ζ→±∞

√
CDN (u10N )

1 +

√
CDN (u10N )

k [ln( z
10 )− ψm(ζ)]

= 0

lim
ζ→±∞

C̃
(k)
HN,εref

(ζ)

1 +
C̃

(k)
HN,εreg

(ζ)

k [ln( z
10 )− ψh(ζ)]

= 0

lim
ζ→±∞

CEN

1 + CEN

k [ln( z
10 )− ψq(ζ)]

= 0.

This means that as ζ → ±∞, the scaling parameters converge to 0, i.e. (u∗, θ∗, q∗)→ (0, 0, 0)398

and u10N → 0.399

For the specific case when400

U = 0.1 m/s, z = 13.43 m, θs = 300.04 K, θa = 301.78 K, qa = 16.87 g/kg, (22)

we shall demonstrate that it is indeed possible for Algorithm 2 to converge to the triv-401

ial solution (u∗, u10N , θ∗, q∗) = (0, 0, 0, 0). We apply Algorithm 2 100 times without the402
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stability limiter (i.e. ζ̃ is replaced by ζ in Algorithm 1), each with a randomized initial403

condition, and plot the scaling parameters at each iteration of the algorithm (Figure 9). We404

observe two distinct solutions for this example – one at (u∗, u10N , θ∗, q∗) = (0, 0, 0, 0) cor-405

responding to the case when ζ → ±∞ and another non-zero solution at (u∗, u10N , θ∗, q∗) =406

(0.0288, 0.303, 0.0281,−0.000142). Such behavior means that the turbulent flux parameteri-407

zation (19) will not generally have a unique solution. Perhaps more importantly, we see that408

the turbulent flux parameterization has undesired solutions that Algorithm 2 will converge409

to.410

3.5.1 Stability limiter411

We now turn our attention to the stability limiter ζ̃ and address its role in determining412

uniqueness of the surface fluxes. Recall that E3SM utilizes the stability limiter in the413

implementation of Algorithm 1 to prevent the magnitude of ζ from growing too large. In414

practice, the limiter prevents the scenario where ζ → ±∞. To the best of our knowledge,415

Figure 10: Progress of approximating the scaling parameters u∗, θ∗, and q∗ and 10-

m wind speed u10N in Algorithm 2 with the limiter (7) applied with ζmax = 10. The

physically-relevant solution remains unchanged from the case with no stability limiter (see

Figure 9 while the original trivial solution at (u∗, u10N , θ∗, q∗) = (0, 0, 0, 0) is shifted to

(u∗, u10N , θ∗, q∗) = (0.00393, 0.00959,−3.28× 10−5, 0.00572).
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no systematic analysis has been carried out to determine the effect of the limiter (7) on416

convergence of Algorithm 1.417

One might expect that since the limiter removes the possibility that ζ → ±∞, the418

trivial solution (u∗, u10N , θ∗, q∗) = (0, 0, 0, 0) should no longer exist and (8) should have a419

unique solution when (7) is used. However, we demonstrate that the limiter does not actually420

remove the second solution at (u∗, u10N , θ∗, q∗) = (0, 0, 0, 0) but rather shifts it away from421

zero. To see this, we consider the same example described by (22) but apply the limiter422

(7) with ζmax = 10 (Figure 10). We observe that the trivial solution at (u∗, u10N , θ∗, q∗) =423

(0, 0, 0, 0) is shifted to (u∗, u10N , θ∗, q∗) = (0.00393, 0.00959,−3.28 × 10−5, 0.00572) and in424

fact, the turbulent flux parameterization described by (19) still has two solutions even when425

the stability limiter is applied.426

More generally, the value of the limiting parameter ζmax has a strong effect on the427

number of solutions of (19). When a closed form solution of a given equation is known,428

a systematic analysis of the effect of a model parameter on uniqueness of the solution is429

straightforward. For instance, one can express the solution as a function of the parameter of430

interest and generate a bifurcation diagram (Chow & Hale, 2012) which provides qualitative431

information on the solution of (8) for each value of the parameter. Given a closed form432

solution of (19) is not known, an approximate bifurcation diagram may still be generated by433

performing several runs of Algorithm 2 for a range of different initial guesses and observing434

how many distinct solutions the algorithm converges to for different values of ζmax435

We increase ζmax from 10−1 to 104 and consider four different meteorological conditions.436

Four distinct scenarios are observed as illustrated in Figure 11:437

1. There is exactly one solution which does not depend on ζmax (Figure 11a).438

2. There is exactly one solution which varies with ζmax until a turning point after which439

the solution is constant with ζmax (Figure 11b). When the solution varies with ζmax,440
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Figure 11: An overview of the possible behavior of the scaling parameters as the limiter

parameter ζmax is varied. (a) There is exactly one solution which is independent of ζmax.

(b) There is exact one solution which varies with ζmax whenever ζmax ≲ 15 and does not

vary with ζmax whenever ζmax ≳ 15. (c) There is exactly one solution which always varies

with ζmax. (d) There is a bifurcation point at which the underlying equations transition

from having exactly one solution to having two solutions. When two solutions exist, one of

them varies with ζmax while the other does not. When one solution exists, it may vary with

ζmax (e.g. for ζmax ≲ 0.5) or may be constant with ζmax (e.g. for 0.5 ≲ ζmax ≲ 0.8).

it is described implicitly by the manifold on which |ζ| = ζmax :441 

u∗(ζmax) =

√
CDN (u10N (ζmax · sgn(∆θ)))

1 +

√
CDN (u10N (ζmax·sgn(∆θ)))

k (ln(z/10)− ψm(ζmax · sgn(∆θ)))
U

u10N (ζmax) =
1

1 +

√
CDN (u10N (ζmax·sgn(∆θ)))

k (ln(z/10)− ψm(ζmax · sgn(∆θ)))
U

θ∗(ζmax) =
CHN (ζmax · sgn(∆θ)))

1 + CHN (ζmax·sgn(∆θ)))
k (ln(z/10)− ψh(ζmax · sgn(∆θ)))

∆θ

q∗(ζmax) =
CEN

1 + CEN

k (ln(z/10)− ψh(ζmax · sgn(∆θ)))
∆q,

(23)

3. There is exactly one solution which depends on ζmax (Figure 11c). This solution is442

given implicitly by (23).443
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4. For ζmax within a certain range, there are exactly two solutions, one of which does444

not vary with ζmax and one of which varies with ζmax (Figure 11d). The latter is445

described by (23). For ζmax outside of this range, there is a unique solution which446

may or may not vary with ζmax. The value of ζmax at which the number of possible447

solutions transitions from one to two is known as a bifurcation point.448

The first scenario is ideal in the sense that the limiter has no effect on the solution.449

While a rigorous theory establishing precisely when this scenario occurs is beyond the math-450

ematical techniques described in this paper, we suspect that this scenario may occur when451

the meteorological conditions prevent the stability parameter ζ from ever approaching the452

large values which induce the second solution described in Section 3.5.453

The second scenario illustrates that the limiter must be chosen carefully in order to454

ensure that the obtained solution exhibits desirable behavior. Specifically, the obtained455

solution should not vary with the value of ζmax. When ζmax ≳ 15, we observe that the456

solution is constant with respect to ζmax. It is this desired solution which a numerical457

method should converge to. On the other hand, if ζmax ≲ 15, we observe the undesired458

behavior in which the solution varies with the value of ζmax. Notably, the current value of459

ζmax = 10 in E3SM is clearly too small and would result in obtaining the undesired solution.460

The third scenario in which the only solution depends on the value of ζmax suggests461

that there is no desired solution to the turbulent flux parameterization (19). It is impossible462

to ascertain which value of ζmax corresponds to a “correct” solution and may suggest that463

the W. Large & Pond (1982) parameterization is not valid for the range of meteorological464

conditions that produce this behavior. For instance, it is well known that in extremely stable465

conditions as ζ → ∞, the assumption of constant surface fluxes with respect to altitude is466

violated (Optis et al., 2016) and the Monin-Obukhov Similarity Theory that underpins the467

derivation of the parameterization is no longer valid.468

Finally, the fourth scenario, much like the second, illustrates the importance of correctly469

selecting ζmax to obtain the physically relevant solution. When ζmax ≳ 0.8, there are two470

solutions to the turbulent flux parameterization (8), and Algorithm 2 may converge to either471

solution depending on the initial guess. For the small interval 0.5 ≲ ζmax ≲ 0.8, only the472

desired solution that does not vary with ζmax is obtained, and this finding suggests that473

the value of ζmax should fall in this interval to guarantee convergence of Algorithm 2 to the474

desired solution.475
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3.5.2 Adaptive selection of limiting parameters476

The preceding discussion in Section 3.5.1 suggests that there is no single value of ζmax477

that will ensure the existence of only one solution to the turbulent flux parameterization for478

all meteorological conditions. For instance, for the meteorological conditions described in479

Figure 11d, a value of ζmax = 0.6 is appropriate but would result in obtaining an undesired480

solution if the same value is used for the meteorological conditions described in Figure 11b.481

Instead, we propose utilizing an adaptive stability limiter in which the value of ζmax is482

permitted to vary based on the meteorological conditions. The key idea is to begin with an483

initial maximum value of ζmax and apply Algorithm 2 to obtain a first approximation of the484

scaling parameters u∗, θ∗, and q∗. If the value of the stability parameter associated with485

scaling parameters, ζ̃(u∗, θ∗, q∗; ζmax), is equal to ζmax, we decrease the value of ζmax and486

Figure 12: An example of the adaptive stability limiting process. For the initial limiter, two

solutions exist – the desired solution which is constant in ζmax (orange curve) and the second,

undesired solution that lines on the manifold described by |ζ̃| = ζmax (blue curve). If the

desired solution is obtained by Algorithm 3, there is no need to adjust the limiting parameter

ζmax. Otherwise, we incrementally decrease ζmax until a solution satisfying |ζ̃| ≠ ζmax is

reached. In this example, the process is guaranteed to terminate once ζmax falls in the

approximate interval (0.5, 0.8). In general, if the process terminates without finding the

desired solution, e.g. because it does not exist (see Figure 11c), then we default to the

solution obtained from the default E3SM limiting parameter value of ζmax = 10. A more

detailed discussion may be found in Section 3.5.2.
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apply Algorithm 2 until scaling parameters are obtained for which ζ̃(u∗, θ∗, q∗; ζmax) ̸= ζmax.487

A visualization of this procedure is provided in Figure 12. The complete turbulent flux488

algorithm with adaptive stability limiter is presented in Algorithm 3.489

Algorithm 3 Modified atmosphere-ocean iteration for uniqueness.

Input: Bulk variables U , ∆θ, and ∆q; damping parameter α ∈ (0, 1]; limiter increment

ζincr > 0; tolerance tol; maximum iterations maxiter.

Output: Approximation (u∗)n, (u10N )n, (θ∗)n, and (q∗)n to the turbulent flux param-

eterization (19).

1: procedure RegularizedUniqueIteration(U , ∆θ, ∆q, ζmax, α, tol, maxiter)

2: Set ζ̃n = ζmax.

3: while ζ̃n = ζmax and ζmax > 0 do

4: Increment ζmax ← max{ζmax − ζincr, 0}.

5: Call [(u∗)n, (θ∗)n, (q∗)n] = RegularizedIteration(U , ∆θ, ∆q, ζmax, α, tol,

maxiter).

6: Compute limited stability parameter ζ̃n = ζ̃((u∗)n, (θ∗)n, (q∗)n; ζmax) according

to (7).

7: end while

8:

9: if ζmax = 0 then

10: Set ζmax = 10.

11: Call [(u∗)n, (θ∗)n, (q∗)n] = RegularizedIteration(U , ∆θ, ∆q, ζmax, α, tol,

maxiter).

12: end if

13: return (u∗)n, (θ∗)n, (q∗)n.

14: end procedure

When there is no desired solution, e.g. the example in Figure 11c, we elect to leave the490

limiting parameter at its default value of ζmax = 10. As previously mentioned, this scenario491

suggests that the underlying assumptions for which the turbulent flux parameterization (8)492

has been developed have been violated. Addressing this issue is beyond the mathematical493

analysis presented in this work and we only note its existence here.494
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Figure 13: A corner plot similar to Fig. 5 but comparing atmospheric conditions that yield

|ζ̃| = ζmax and those that yield |ζ̃| ≠ ζmax.

3.5.3 Occurrence of undesired solutions in E3SM495

The preceding discussion highlights the issues associated with the stability limiter (7).496

In particular, current implementations of ocean-atmosphere turbulent flux algorithms may497

potentially converge to undesired solutions on the manifold |ζ| = ζmax. To better under-498

stand the physical conditions producing |ζ| = ζmax, we again consider ten years of data499

from the CTRL simulation. We apply the default Algorithm 1 and categorize each spatial500

location based on the value of ζ after 100 iterations. Figure 13 shows the distribution of501

meteorological conditions when |ζ| = ζmax and when |ζ| ≠ ζmax. The clearest distinction502

between the two cases is that locations for which |ζ| = ζmax have relatively small wind503

speeds of less than 2 m/s. Such conditions are most frequent around the Equator, especially504

across the Indian Ocean, as shown in Figure 14.505

4 Climatological impact on E3SM simulations506

We perform a pair of 10-year simulations – CTRL and SENS described in Section 2.1 –507

to investigate the sensitivity of E3SM to the proposed changes in Algorithm 3. For SENS,508

a tolerance of tol = 10−4 is used for the stopping criterion with a maximum permissible509
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Figure 14: Percentage of days for which |ζ̃| = ζmax(= 10) in ten years of daily instantaneous

output from the CTRL simulation. The condition |ζ̃| = ζmax indicates that the surface fluxes

lie on the manifold of solutions to (19) which vary with ζmax. Different panels correspond

to different seasons. Gray shading indicates land, and white areas are sea ice.

number of iterations maxiter = 2 × 106; the value of maxiter is arbitrarily chosen to be510

significantly larger than expected to reach the specified tolerance. A C0 regularization is511

used to enforce continuity of the exchange coefficient CHN with εreg = 0.5. A damping512

value of α = 0.08 is employed in the iteration. Lastly, an initial stability limiting parameter513

of ζmax = 20 is used with an increment of ζincr = 0.25 in the adaptive limiting process.514

To determine which differences are statistically significant, a one-sample Student’s t-test515

is performed using monthly mean output data. Since the data are serially correlated, we516

utilize a revised t-test in which the t statistic is scaled by an effective sample size (Zwiers517

& von Storch, 1995). A significance level of 0.05 is utilized to determine when the mean of518

the differences is likely to be non-zero.519

The largest effect on latent and sensible heat fluxes occurs in boreal winter (DJF) (right520

panels of Figure 15). Statistically significant differences in both fluxes cover most of the521

globe. The largest differences, however, are in the Northern Hemisphere with large increases522

centered over the North Atlantic. The new algorithm also produces large decreases in latent523
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Figure 15: The 10-year mean latent heat flux (top row) and sensible heat flux (bottom

row) for the months DJF, as well as the difference between the control and test simulations

(right column) in which statistically insignificant differences are masked out in white.

heat flux of similar magnitude over the subtropical deserts of North Africa and the Middle524

East. These results show that ensuring that the atmosphere-ocean turbulent flux parame-525

terizations are well-posed has a significant impact on Earth system model simulations.526

5 Conclusions527

We have analyzed the default ocean-atmosphere turbulent flux parameterization in528

E3SMv2 to determine under which conditions the underlying equations have a unique solu-529

tion. Our analysis has shown that there are certain physical conditions, mostly encountered530

in the mid-latitude oceans under stable conditions, for which there is no solution to the531

underlying equations, and any algorithm attempting to compute surface fluxes from this532

parameterization will fail to converge. This non-convergence manifests as oscillations of the533

surface flux iterates and results in a rather large residual error (> 50% on average). More-534

over, we have shown that the W. Large & Pond (1982) turbulent flux parameterization does535

not always yield unique surface fluxes and the use of ad hoc limiters on the Obukhov length536
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has a strong influence on the number of solutions. Meteorological conditions that produce537

non-unique solutions are found mostly in regions with low wind speed near the Equator.538

We have introduced two modifications to the W. Large & Pond (1982) algorithm in order539

to enforce both existence and uniqueness of the computed surface fluxes. These modifications540

include (i) regularization of discontinuous exchange coefficients which resolves issues with541

oscillating surface fluxes corresponding to large residual errors, and (ii) adaptive selection542

of limiter parameters to eliminate multiple solutions. Our analysis also demonstrates the543

need to exercise caution when applying turbulent flux algorithms globally under conditions544

for which the underlying assumptions of the algorithm are violated. For instance, in the545

extreme stability limit as ζ → +∞, the assumptions of Monin-Obukhov Similarity Theory546

are violated, suggesting that the W. Large & Pond (1982) formulation should not be utilized547

under these conditions.548

Sensitivity of E3SMv2’s mean climate to these issues of well-posedness was investigated549

by comparing a 10-year simulations using the default iteration in Algorithm 1 and the regu-550

larized iteration in Algorithm 3. The regularized iteration results in statistically significant551

differences in the model latent and sensible heat fluxes compared to those of the default552

iteration.553

Results in this work utilize a fully converged nonlinear iteration. This is important for554

ensuring the algorithm attains a specified level of accuracy. While the cost of additional555

iterations beyond the default of two in the E3SMv2 code is small, we have also demonstrated556

that techniques such as Anderson acceleration can significantly reduce the added cost of fully557

converging the iteration.558

The analysis in this study provides a framework for future investigation of other ocean-559

atmosphere flux algorithm options in E3SM such as the COARE (Fairall et al., 2003) and560

the University of Arizona (UA, Zeng et al., 1998) algorithms. The limiter (7) is also applied561

in the UA algorithm as implemented in E3SMv2. Furthermore, COARE utilizes limiters562

for wind gustiness whose effect on uniqueness of the computed surface fluxes has not yet563

been studied. Additionally, turbulent flux algorithms over sea ice and land share many564

similarities with the ocean-atmosphere algorithms since they too are based on MOST. They565

may also include discontinuous exchange coefficients in certain scenarios as well as ad hoc566

use of stability limiters as seen here in the ocean-atmosphere algorithm and will be the567

subject of future research.568
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Open Research Section569

Model run data corresponding to the CTRL simulation and Python scripts used to570

generate bifurcation diagrams may be found in Dong et al. (2024a). Model run data corre-571

sponding to the SENS simulation may be found in Dong et al. (2024b). A fork of E3SMv2572

containing the proposed changes to E3SM’s ocean-atmosphere turbulent flux algorithm in573

Algorithm 3 may be found at Dong (2024).574
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