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Abstract5

We consider the neural network approximation of systems of partial differential6

equations exhibiting multiscale features such as the Reissner-Mindlin plate model which7

poses significant challenges due to the presence of boundary layers and numerical phe-8

nomena such as locking. This work builds on the basic Galerkin Neural Network9

approach established in [1] for symmetric, positive-definite problems. The key contri-10

butions of this work are (1) the analysis and comparison of several new least squares-11

type variational formulations for the Reissner-Mindlin plate, and (2) their numerical12

approximation using the Galerkin Neural Network approach. Numerical examples are13

presented which demonstrate the ability of the approach to resolve multiscale phenom-14

ena such for the Reissner-Mindlin plate model for which we develop a new family of15

benchmark solutions which exhibit boundary layers.16

1 Introduction17

Neural networks offer an interesting alternative to traditional numerical methods for partial18

differential equations (PDEs) such as finite elements, finite differences, and finite volumes,19

and have been used to approximate various linear and nonlinear elliptic, parabolic, and20

hyperbolic PDEs [9, 23, 29, 30, 33, 39]. Generally, such approaches seek to approximate the21

true solution by the realization of a neural network which is trained by minimizing the `2-22

norm of the strong residual of the PDE. The fact that the PDE will not have strong solutions23

in general has prompted the development of neural network frameworks based on variational24

principles [25,26,38,40]. In [1], we proposed an adaptive neural network framework (Galerkin25

Neural Networks) for approximating symmetric, positive-definite variational equations which26

also incorporated error control and showed it to be capable of achieving a high level of27

accuracy on a range of standard test problems.28

Of course, all of this begs the question of what advantages (if any) are offered by neural29

networks over traditional numerical methods? Traditional methods have the benefit of being30

refined over many decades and are often capable of delivering high-fidelity approximations31
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efficiently while the potential benefits of a neural network-based approach for such prob-32

lems are unclear. It is nevertheless the case that there remain many classes of problem that33

pose difficulties for traditional numerical methods. Examples include parameter-dependent34

problems that arise in linear elasticity and plate theory which exhibit locking [17]. Lock-35

ing means that the numerical approximation deteriorates for small parameter values even36

though the solution itself may not be sensitive to this parameter. Additionally, in some37

models such as the Reissner-Mindlin plate model, a characteristic feature of solutions is the38

presence of boundary layers. In conjunction with the possibility of locking, the robust and39

accurate approximation of such problems still poses a serious challenge, which has led to the40

development of a whole gamut of sophisticated techniques in an attempt to obtain schemes41

capable of delivering robust and high-resolution approximations [3,6,10,13,16,20,22,34,35].42

In this work, we consider the question of whether a neural network approach is capable43

of approximating Reissner-Mindlin plates uniformly in the plate thickness while also resolv-44

ing multiscale features such as boundary layers. The universal approximation property of45

neural networks should, in theory, mean that neural networks have the capability to resolve46

multiscale features. While results exist quantifying how the accuracy of a neural network47

approximation varies with respect to the width and depth of the network [?,?, 18,27,28,32]48

the capability of neural networks to uniformly approximate parameter-dependent functions49

exhibiting boundary layers remains open. The relationship between ReLU networks and50

piecewise linear approximations means that one can expect univariate ReLU networks to be51

capable of delivering uniformly accurate approximations of functions exhibiting boundary52

layers. The results in Figure 1 confirm this expectation. While such a result shows that53

neural networks are capable of delivering uniformly accurate approximations for direct ap-54

proximation of functions exhibiting boundary layers in the univariate case, it remains to be55

seen whether similar results can be achieved in higher dimensions and when the function is56

Figure 1: Left: Numerical approximation rate of the function u(x) = (1− e(x−1)/t− e−x/t +
e−1/t)/(1 + e−1/t) for various t using a ReLU network with one hidden layer. Right: The
function u(x) alongside the ReLU approximation. The hidden weights are set to 1, the biases
are graded to account for the boundary layers, and the activation coefficients are chosen so
that the network interpolates the function u at the points where the ReLU basis functions
activate.
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Algorithm 1: Galerkin Neural Network Framework.

Input: Data L, bilinear operator a, network widths {ni}, initial approximation
u0 ∈ X, tolerance tol > 0, optimization subroutine AugmentBasis (any
optimization procedure for approximating (7).

Output: Numerical approximation uN to the variational problem: u ∈ X such that
a(u, v) = 〈f, v〉 for all v ∈ X; basis functions {ϕNNi }Ni=0.

1 Set i = 1 and ϕNN0 = u0.
2 ϕNN1 ← AugmentBasis(u0).

3 while 〈r(ui−1), ϕNNi 〉/|||ϕNNi ||| > tol do
4 Form Si := span{u0, ϕ

NN
1 , . . . , ϕNNi } and seek ui ∈ Si : a(ui, v) = L(v) for all

v ∈ Si.
5 ϕNNi+1 ← AugmentBasis(ui).
6 Set i← i+ 1.

7 end

8 Return uN and {ϕNNj }Nj=0.

implicitly defined to be the solution of a singularly perturbed system of elliptic PDEs.57

Accordingly, we investigate the neural network approximation of Reissner-Mindlin plates.58

As alluded to earlier, the nonlinear nature of neural networks should mean that they are nat-59

urally adaptive to multiscale features without the need for specialized grids or elements. In60

addition, it is easy to increase the smoothness of the neural network approximation by choos-61

ing appropriate activation functions, which gives the flexibility to consider natural variational62

formulations posed on smoother Sobolev spaces than might otherwise be practical were stan-63

dard finite elements to be used. We introduce and analyze several new, least squares-type,64

variational formulations for the Reissner-Mindlin plate and use them in conjunction with the65

Galerkin Neural Network approach developed in [1]. The relative performance of the various66

formulations and, in particular, whether they exhibit locking, together with their ability to67

resolve multiscale features is illustrated for a class of new benchmark (closed form) solutions68

of the Reissner-Mindlin problem which exhibits boundary layers.69

The rest of this work is structured as follows. In Section 2, we review the Galerkin70

Neural Network framework and its underlying theory which will be used to approximate71

the model problem. In Section 3, we introduce a new realistic benchmark problem which72

exhibits multiscale features and also consider the capacity of neural networks to approximate73

such features. In Section 4, we apply the Galerkin Neural Network method to several new74

variational formulations for the Reissner-Mindlin plate and demonstrate the robustness of75

our approach with respect to the plate thickness. Conclusions follow in Section 5.76

3



2 Galerkin Neural Network Framework77

In this section, we briefly summarize the main features of the Galerkin Neural Network78

approach developed in [1] that we will later use. Let79

V σ
n := {v : v(x) =

n∑
i=1

ciσ(x ·Wi + bi), bi, ci ∈ R, Wi ∈ Rd, x ∈ Ω} (1)

be the set of all functions which are the realizations of a feedforward neural network consisting80

of a single hidden layer of n neurons and nonlinear, continuous activation function σ : R→ R.81

Here, W and b are the weights and biases, respectively, of the hidden layer, and c are the82

activation coefficients of the network. Additionally, we let V σ
n,C be the subset consisting of83

realizations with bounded parameters:84

V σ
n,C := {v ∈ V σ

n : ||(W, b, c)|| < C}, (2)

where ||(W, b, c)|| := maxij |Wij|+ maxi |bi|+ maxi |ci|.85

A key property of neural networks is that they are universal approximators [21] in the86

sense that, for any given function f ∈ Hs(Ω) and τ > 0, there exist a network of width n87

and a function f̃ ∈ V σ
n such that ||f − f̃ ||Hs(Ω) < τ . The universal approximation property88

suggests that neural networks might be used to approximate the solutions of PDEs. To this89

end, consider the following variational problem:90

u ∈ X : a(u, v) = L(v) ∀v ∈ X, (3)

where X ⊂ Hs(Ω), L(·) is a bounded linear operator on Hs(Ω), and a(·, ·) is a symmetric,91

positive-definite bilinear operator on Hs(Ω) which is continuous and coercive with respect92

to Hs(Ω), i.e. there exist constants M,α > 0 such that |a(u, v)| 6 M ||u||Hs(Ω)||v||Hs(Ω) and93

α||v||2Hs(Ω) 6 a(v, v) for all u, v ∈ X. The bilinear form a(·, ·) induces a norm denoted by94

||| · |||a :=
√
a(·, ·).95

In previous work [1], we used neural networks to iteratively construct a sequence of basis96

functions {ϕNNi ∈ V σi
ni
, i ∈ N} that were used to define a Galerkin scheme for (3) based on97

an initial approximation u0 ∈ X and the functions ϕNNi as follows:98

ui ∈ Si := span{u0, ϕ
NN
1 , . . . , ϕNNi } : a(ui, v) = L(v) ∀v ∈ Si. (4)

Céa’s Lemma [12] provides the following error estimate for ui:99

|||u− ui|||a 6
√
M

α
|||u− v|||a ∀v ∈ Si, (5)

which means that the approximation ui is, up to a constant, the best possible approximation100

from the subspace Si.101

The basis functions ϕNNi are constructed iteratively as follows. Given ui−1, i > 1, the102

weak residual r(ui−1) : X → R is defined by103

〈r(ui−1), v〉 = L(v)− a(ui−1, v), v ∈ X, (6)
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Figure 2: A visualization of the Galerkin Neural Network framework using three shallow
networks consisting of two, four, and six neurons each.

where 〈r(ui−1), v〉 denotes the duality pairing on X. Using the weak residual as the loss104

function, the ith basis function ϕNNi is constructed by training a neural network to find the105

maximizer as follows:106

ϕNNi ∈ V σ
ni,Ci

: 〈r(ui−1), ϕNNi 〉 = max
v∈V σni,Ci∩B

〈r(ui−1), v〉, (7)

where B is the closed unit ball in X. Any standard training procedure may be used to solve107

(7); we use the approach given in Algorithm 2 of [1].108

The residual may be rewritten using (3) as

〈r(ui−1), v〉 = a(u, v)− a(ui−1, v) = a(u− ui−1, v), v ∈ X

which, thanks to the Cauchy-Schwarz inequality, is maximized when v ∝ u − ui−1. This109

means that the basis function ϕNNi ∈ V σ
ni,Ci
∩B is an approximation to the normalized error110

(u−ui−1)/|||u−ui−1|||. Consequently, we may view {ϕNNi } as a sequence of increasingly fine111

scale corrections to the initial approximation u0. A pictorial representation of the Galerkin112

Neural Network scheme is provided in Figure 2.113

The basic properties of the Galerkin Neural Network scheme are summarized in the114

following theorem [1].115

Theorem 2.1. For i > 1, let τi ∈ (0, 1) and ui be defined as in (4). Then there exist network116

widths ni = n(τi, ui−1) and bounds Ci = C(τi, ui−1) depending on τi and ui−1 such that117

|||u− ui|||a 6 |||u− u0|||a · Πi
j=12τj/(1− τj) (8)

Moreover, if 0 < τi < 1/3 then118

1− τi
1 + τi

ηi 6 |||u− ui−1|||a 6
1− τi
1− 3τi

ηi (9)

where ηi := 〈r(ui−1), ϕNNi 〉.119
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Figure 3: Domain for the test problem in Section 3.

The estimate (9) shows that the (fully computable) quantity ηi provides an a posteriori120

error estimator [2,37] for the true error |||u−ui−1|||a which can be used as a stopping criterion121

(as in Algorithm 1).122

3 Boundary Layer Resolution using Neural Networks123

Physical problems involving small (or large) parameters often exhibit localized features on a124

length scale defined by the parameter. One such example is the Reissner-Mindlin plate model125

which describes the bending of a thin plate while taking into account shear deformation. Let126

β be the rotation of the fibers normal to the midplane of the plate and let ω be the transverse127

displacement of the midplane itself. The Reissner-Mindlin model takes the form of a system128

of elliptic PDEs:129 
−∆β + t−2(β −∇ω) = 0 in Ω

t−2div (β −∇ω) = g, in Ω

β = 0, ω = 0 on ∂Ω.

(10)

Here, Ω ⊂ R2 is the midplane of the plate, t > 0 is the plate thickness, g is the applied130

transverse load, and, for ease of exposition, we use a simplified stress-displacement law which131

nevertheless retains the essential character of the Reissner-Mindlin model. The boundary132

conditions correspond to a hard, simple support [5], which means that, in the limit where133

the plate thickness t tends to 0, the Reissner-Mindlin model gives rise to boundary layers134

which manifest most strongly in the shear stress [7] defined by135

σ := t−2(β −∇ω). (11)
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Figure 4: Left: True x-component of shear stress with n = 1 and t = 10−2. Right: True
y-component of the shear stress with n = 1 and t = 10−2.

3.1 Benchmark Solution of Reissner-Mindlin Plate Exhibiting Bound-136

ary Layers137

In order to illustrate the above points more concretely, we derive a class of closed form
solutions of the Reissner-Mindlin plate model which will later be used to benchmark the
performance of numerical schemes. Consider an infinite strip along the x-axis subject to a
univariate 2π-periodic transverse load g. Due to periodicity, it suffices to consider a single
period Ω = (−π, π) × (−1, 1) as shown in Figure 3. We partition the boundary of Ω into
disjoint sets ΓD = (−π, π)×{−1}∪{1} and Γsym = {−π}∪{π}× (−1, 1) with homogeneous
Dirichlet boundary conditions applied on ΓD and periodic boundary conditions applied on
Γper. The periodic transverse load g(x) is written as a Fourier series given by

g(x) =
1

2
g0 +

∞∑
n=1

gn cos(nx) +
∞∑
n=1

g̃n sin(nx).

For n ∈ N0, let (βn, ωn) be given by138

βn(x, y) =

[
−(Φ′n(y, t) + n ·Ψn(y, t)− n ·Υn(y, t)) sin(nx)

(n · Φn(y, t) + Ψ′n(y, t)−Υ′n(y, t)) cos(nx)

]
ωn(x, y) = [(1 + t2)Ψn(y, t)−Υn(y, t)] cos(nx), (12)

where Φn, Ψn, and Υn are given by139

Φn(y, t) =
An(t)t sinh(λny)

sinh(λn)
, Ψn(y, t) =


−y2/2 +D0(t), n = 0

n−2 −Dn(t) · cosh(ny)

cosh(n)
, n > 0

(13)

Υn(y, t) =


−y2/2− y4/24 +B0(t)y2, n = 0

Bn(t)y · sinh(ny)

sinhn
− (n−4 − n−2) +

Cn(t) · cosh(ny)

coshn
, n > 0,
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with An(t), Bn(t), Cn(t), and Dn(t) coefficients depending on n and t, and λn := (n2 +140

1/t2)1/2. The values of An(t), Bn(t), Cn(t), and Dn(t) are determined by the boundary141

conditions and have series expansions valid for small t given by142

An(t) =

(
2

n
− 4ξn

)
t2 +O(t3) (14)

Bn(t) = ξn
tanh(n)

n

[
− 1

n2
+ 2(−1 + 2ξn)t2 +O(t3)

]
Cn(t) =

ξn
n2

[
n coth(n)− 2n2 + 1

n2
+
(
2(coth(n)− 2n2 + 1)− 2ξn tanh(n)

)
t2 +O(t3)

]
Dn(t) = ξn

[
tanh(n)

n2
+ 4 (1− 2ξn) t2 +O(t3)

]
,

where ξn = sinh(2n)/(2n + sinh(2n)). Full details leading to (14) will be found in the143

Appendix.144

Straightforward manipulation reveals that the functions defined in (12) satisfy145 
−∆βn + t−2(βn −∇ωn) = 0 in Ω

t−2div (βn −∇ωn) = cos(nx), in Ω

βn = 0, ωn = 0 on ΓD

βn, ωn periodic on Γper.

(15)

In turn, thanks to linearity and the translation identity sin(nx) = cos(nx−π/2), the solution
to (10) is given by

β(x, y) =
1

2
g0β0(x, y) +

∞∑
n=1

gnβn(x, y) +
∞∑
n=1

g̃nβn(x− π

2n
, y)

Figure 5: Left: True x-component of shear stress with n = 1 and t = 10−2. Right: Neural
network approximation of x-component of shear stress with n = 1 and t = 10−2.
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ω(x, y) =
1

2
g0ω0(x, y) +

∞∑
n=1

gnωn(x, y) +
∞∑
n=1

g̃nωn(x− π

2n
, y).

This solution was given in [3] in the particular case when n = 1; here, we generalize to any146

n ∈ N0. The shear stress σn = t−2(βn−∇ωn) associated with the nth Fourier mode is given147

by148

σn(x, y) =

[
[−t−2Φ′n(y, t) + n ·Ψn(y, t)] sin(nx)
[nt−2 · Φn(y, t)−Ψ′n(y, t)] cos(nx)

]
, (16)

which, for t� 1, exhibits a boundary layer on the upper and lower edges of the plate:

σn(x, y) ∼ An(t)

t2 sinhλn

[
−λn cosh(λny) sin(nx)
n sinh(λny) cos(nx)

]
,

or, thanks to (14):

σn(x, y) ∼
(

1

n
− 2 sinh(2n)

2n+ sinh(2n)
+O(t3)

)
2

sinh(λn)

[
−λn cosh(λny) sin(nx)
n sinh(λny) cos(nx)

]
.

Figure 4 shows the shear stress in the case n = 1 and t = 10−2. The factors cosh(λny) and149

sinh(λny) each give rise to boundary layers in both components of the shear stress, which is150

more pronounced in the x-component of σn due to the presence of the factor λn � n when151

t� 1.152

3.2 Function Fitting of Reissner-Mindlin Shear Stress153

We are interested in the approximability of the boundary layer in the shear stress σ using154

neural networks. In order to isolate the issue of approximability, we utilize Algorithm 1155

in order to “learn” the x-component of the shear stress, σ(1), with n = 1. The bilinear156

operator is given by a(u, v) = (u, v)Ω + (∇u,∇v)Ω + ε−1(u, v)∂Ω and the data is given by157

L(v) = (σ(1), v)Ω + (∇σ(1),∇v)Ω. The training data consists of 128 × 128 Gauss-Legendre158

quadrature points. The width of the network for each basis function is ni = 20 · 2i−1 while159

the activation function for each basis function is σi(z) = tanh((1+0.25i)z). The hyperplanes160

of the network for each basis function are initialized so that they are parallel to the x-axis,161

the y-axis, y = x, or y = −x (see [1], §3.2.2).162

Figure 5 shows the neural network approximation to the shear stress, from which it163

is apparent that the sequence of networks is capable of approximating the boundary layer.164

These results demonstrate that the Galerkin Neural Network procedure is capable of resolving165

boundary layers without issue when applied to a simple function fitting of the shear stress166

σn.167

4 Variational Formulations of the Reissner-Mindlin Model168

Encouraged by the results of Section 3 showing the capability of neural networks to approxi-169

mate the shear stress, we now turn to the question of which choice of variational formulation170

9



Figure 6: True solution ω (left), β (middle), and σ (right) with t = 10−6 and n = 0.

for the Reissner-Mindlin plate model to use in conjunction with neural networks. Ideally,171

we seek a variational formulation for which the associated bilinear form is continuous and172

coercive with constants M and α (see [12]) that are independent of t which, thanks to Céa’s173

Lemma, means that by establishing control of the ratio M/α, we have a quasi-optimal so-174

lution. To this end, we present and analyze several variational formulations and provide175

numerical results demonstrating their efficacy or lack thereof.176

In all numerical examples that follow, unless otherwise stated, the neural network ar-177

chitecture for the ith Galerkin Neural Network basis function consists of a single hid-178

den layer of width ni = 20 · 2i−1. The activation function for the ith basis function is179

σi(z) = tanh((1 + 0.25i)z). The weights and biases are initialized so that the hyperplanes180

x ·Wj + bj of the hidden layer are either parallel to the x-axis, y-axis, y = x, or y = −x as181

described in [1]. The training data consists of 128× 128 Gauss-Legendre quadrature nodes,182

while the validation data used to compute the loss function and true errors where such a183

computation is possible consists of 150× 150 Gauss-Legendre quadrature nodes.184

4.1 Natural Variational Formulation185

The natural variational formulation of (10) is to seek (β, ω) ∈ X := H1
0(Ω)×H1

0 (Ω), where186

X is equipped with the norm ||(β, ω)||X := (||β||2H1(Ω) + ||ω||2H1(Ω))
1/2, such that187

B0((β, ω); (ϕ, v)) := (∇β,∇ϕ)Ω + t−2(β −∇ω,ϕ−∇v)Ω = (g, v) =: L0(ϕ, v) (17)

for all (ϕ, v) ∈ X. The operator B0 is symmetric and positive-definite as well as continuous188

and coercive according to the following result:189

Proposition 4.1. Let (β, ω) ∈ X and 0 < t 6 1. There exist constants C1 > 0 and C2 > 0
such that

B0((β, ω); (ϕ, v)) 6 C1t
−2||(β, ω)||X · ||(ϕ, v)||X ∀(β, ω), (ϕ, v) ∈ X

C2||(β, ω)||2X 6 B0((β, ω); (β, ω)) ∀(β, ω) ∈ X.

Proof. First, we apply the Cauchy-Schwarz inequality with respect to L2 to obtain

B0((β, ω); (ϕ, v)) 6 ||∇β||Ω||∇ϕ||Ω + t−2||β −∇ω||Ω||ϕ−∇v||Ω

10



Figure 7: Relative error after each iteration of Algorithm 1 for the case when n = 0 with
variational formulation on B0,L0.

6 ||∇β||Ω||∇ϕ||Ω + t−2(||β||H1(Ω) + ||ω||H1(Ω))(||ϕ||H1(Ω) + ||v||H1(Ω)).

Applying the Cauchy-Schwarz inequality with respect to `2 as well as Young’s inequality
yields

B0((β, ω); (ϕ, v)) 6 [||β||2H1(Ω) + 2t−2||β||2H1(Ω) + 2t−2||ω||2H1(Ω)]
1/2

· [||ϕ||2H1(Ω) + 2t−2||ϕ||2H1(Ω) + 2t−2||v||2H1(Ω)]
1/2

6 C1t
−2(||β||2H1(Ω) + ||ω||2H1(Ω))

1/2(||ϕ||2H1(Ω) + ||v||2H1(Ω))
1/2

where C1 = 3. Similarly, applying Poincare’s inequality to β and ω and the triangle inequal-
ity yields

||β||2H1(Ω) + ||ω||2H1(Ω) 6 Cp||∇β||2Ω + Cp||∇ω||2Ω 6 C2(||∇β||2Ω + ||β −∇ω||2Ω)

6 C2(||∇β||2Ω + t−2||β −∇ω||2Ω).

190

Proposition 4.1 means that Algorithm 1 is applicable to (17). However, we note that the191

ratio M/α is unbounded as t→ 0, which suggests that the approximation to the variational192

problem may not be quasi-optimal. In order to illiustrate this, we begin by considering the193

simplest case of (15) in which the load g(x, y) = 1. This problem corresponds to (15) with194

n = 0. In this case, the true solution is univariate and does not vary in the x-coordinate, nor195

is it sensitive to the value of t. However, even though the solution is univariate in y, we do196
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not explicitly enforce this in the neural network structure. Figure 6 shows the y-components197

of the true solutions ω and β, and σ when t = 10−6.198

Figure 7 shows a convergence plot of the error in the energy norm (B0-norm) after each199

iteration of Algorithm 1 as well as the L2 error in the stress σ = t−2(β −∇ω) and rotation200

and displacement β and ω for t = 1, 10−2, 10−4, 10−6. We denote by ϕNNi the basis functions201

for approximating β and by vNNi the basis functions for approximating ω. Figure 8 shows202

the approximate shear stress obtained by Algorithm 1 by computing t−2(ϕi−∇ωi) after the203

2nd, 4th, 6th, and 8th iterations with t = 10−6. The hyperparameters are as given at the204

beginning of Section 4.205

Since the Galerkin Neural Network framework is not a direct Galerkin method, a natural206

question to ask is whether it exhibits locking. As the results show, it is immediately evident207

that as t decreases, the convergence rate of both the energy error and the L2 errors are208

greatly reduced. Even worse, while the true shear stress is a simple linear function, the209

neural network approximation exhibits large spurious oscillations which dampen slowly as210

more iterations of Algorithm 1 are taken. This stalled convergence as t is decreased is211

reminiscent of the locking phenomenon observed in finite element approximation [8,36] and212

suggests that the natural variational formulation (17), like with the finite element method,213

is not suitable for the Galerkin Neural Network framework.214

4.2 Mixed Least Squares Variational Formulation215

One common approach to help reduce, or even eliminate, the effects of locking consists of216

introducing the shear stress σ as a primal variable [4]. That is, the system217 
−∆β + σ = 0 in Ω

div σ = g in Ω

t2σ − (β −∇ω) = 0 in Ω

β = 0, ω = 0 on ∂Ω

(18)

is considered in lieu of (10). One disadvantage of this approach is that the resulting mixed

Figure 8: Approximate x-component of the shear stress for the 2nd, 4th, and 6th itera-
tions of the Galerkin Neural Network algorithm for the univariate problem with variational
formulation on B0,L0.
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Figure 9: Relative errors after each iteration of Algorithm 1 for the univariate problem
with variational formulation on BLS,LLS.

variational formulation corresponds to the bilinear form

(∇β,∇ϕ)Ω + (σ,ϕ−∇v)Ω + (β −∇ω, τ )Ω − t2(σ, τ )Ω

which, although symmetric, is not positive definite (e.g. take β = ϕ = 0, ω = v = 0, and
σ = τ 6= 0), so Algorithm 1 is not applicable. Instead, we shall consider an alternative
mixed formulation based on least squares variational principles. Setting XLS := H1

0(∆; Ω)×
H1

0 (Ω)×H(div; Ω) where H1
0(∆; Ω) := {v ∈ H1

0(Ω) : ∆v ∈ L2(Ω)} with norm

||(β, ω,σ)||LS := (||β||2H1(Ω) + ||t∆β||2Ω + ||ω||2H1(Ω) + ||tσ||2Ω + ||∇ · σ||2Ω)1/2,

we define the bilinear operator BLS : XLS ×XLS → R given by218

BLS((β, ω,σ); (ϕ, v, τ )) := t2(−∆β + σ,−∆ϕ+ τ )Ω + (div σ, div τ )Ω

+ (t2σ − (β −∇ω), t2τ − (ϕ−∇v))Ω (19)

and the linear operator LLS : XLS → R given by219

LLS(ϕ, v, τ ) := (g, div τ )Ω. (20)

The bilinear operator BLS is both continuous and coercive, allowing us to apply Algorithm220

1. However, we note that the coercivity estimate is again degenerate in t, which suggests we221

might expect deterioration of the numerical approximation as the plate thickness is reduced.222

223

Proposition 4.2. Let (β, ω,σ) ∈ XLS and 0 < t 6 1. There exist constants C1 > 0 and
C2 > 0 independent of t such that

BLS((β, ω,σ); (ϕ, v, τ )) 6 C1||(β, ω,σ)||LS · ||(ϕ, v, τ )||LS ∀(β, ω,σ), (ϕ, v, τ ) ∈ XLS

C2t
2||(β, ω,σ)||2LS 6 BLS((β, ω,σ); (β, ω,σ)) ∀(β, ω,σ) ∈ XLS.
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Figure 10: For t = 10−6, the y-component of the true error σ − σi (top row) and the
y-component of the basis function τNNi (bottom row) for the 1st, 3rd, and 5th iterations of
Algorithm 1 for the univariate problem with variational formulation on BLS,LLS.

Proof. For the first inequality, we apply the Cauchy-Schwarz inequality with respect to L2

to obtain

BLS((β, ω,σ); (ϕ, v, τ )) 6 ||t(−∆β + σ)||Ω · ||t(−∆ϕ+ τ )||Ω + ||∇ · σ||Ω · ||∇ · τ ||Ω
+ ||t2σ − (β −∇ω)||Ω · ||t2τ − (ϕ−∇v)||Ω

6 (||t∆β||Ω + ||tσ||Ω) · (||t∆ϕ||Ω + ||tτ ||Ω) + ||∇ · σ||Ω · ||∇ · τ ||Ω
+ (||tσ||Ω + ||β||H1(Ω) + ||ω||H1(Ω))·

(||tτ ||Ω + ||ϕ||H1(Ω) + ||v||H1(Ω)).

An application of the Cauchy-Schwarz inequality with respect to `2 yields the result.224

As for the second inequality, given (β, ω,σ) ∈ XLS, we form the system225 
g1 := −∆β + σ in Ω

g2 := ∇ · σ in Ω

t2g3 := t2σ − (β −∇ω) in Ω

β = 0, ω = 0 on ∂Ω.

(21)

We can form the following variational formulation: (β, ω,σ) ∈ XLS s.t.226 
(∇β,∇ϕ)Ω + (σ,ϕ)Ω = (g1,ϕ)Ω ∀ϕ ∈ Xβ

(∇ · σ, v)Ω = (g2, v)Ω ∀v ∈ Xω

t2(σ, τ )Ω − (β, τ )Ω + (∇ω, τ )Ω = t2(g3, τ )Ω ∀τ ∈ Xσ.

(22)
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Setting ϕ = β, v = ω, and τ = σ, integrating the third equation of (22) by parts, and227

adding all three equations together yields228

||∇β||2Ω + t2||σ||2Ω 6 ||g1||Ω · ||β||Ω + ||g2||Ω · ||ω||Ω + t||g3||Ω · t||σ||Ω. (23)

For the second term on the RHS of (23), we observe by the Poincare inequality that

||ω||Ω 6 C||∇ω||Ω 6 C||t2g3 − t2σ + β||Ω 6 C(t2||g3||Ω + t2||σ||Ω + ||β||Ω),

from which we obtain

||∇β||2Ω + t2||σ||2Ω 6 C(||g1||Ω + ||g2||Ω) · ||β||Ω + C||g2||Ω · t2||g3||Ω
+ C(t||g2||Ω + t||g3||Ω) · t||σ||Ω.

Now, the first term on the RHS can be dealt with using Poincare’s inequality and the ε-
Young’s inequality while the second and third terms on the RHS can be dealt with using the
ε-Young’s inequality:

||∇β||2Ω + t2||σ||2Ω + ||∇ω||2Ω 6 C(||g1||2Ω + ||g2||2Ω + ||t2g3||2Ω).

As for ||∇ · β||Ω, we have ||∇ · β||Ω = ||g2||Ω. Finally, for the second-order term, we
consider

−t∆β + tσ = tg1

to obtain ||t∆β||Ω 6 ||tσ||Ω + ||tg1||Ω. Altogether, we have

||(β, ω,σ)||2LS 6 C(||g1||2Ω + ||tg1||2Ω + ||g2||2Ω + ||t2g3||2Ω)

6 Ct−2(||tg1||2Ω + ||g2||2Ω + ||t2g3||2Ω) 6 Ct−2 ·BLS((β, ω,σ); (β, ω,σ)).

229

While the least squares formulation based on (18) seems a natural choice, hitherto it has230

not been employed in practice. One reason is that a direct application of the least squares231

functional to second-order problems requires that the approximation space be a conforming232

subspace of H2, i.e. continuously differentiable elements are required when using finite233

element methods, which is often viewed as unattractive by finite element practitioners. To234

circumvent this issue, several approaches exist in the literature. The first is to reduce second235

order problems to first order problems by introducing auxiliary variables, which increases the236

size of the corresponding linear system. The second more sophisticated approach is to recast237

the least squares formulation in terms of a negative norm (i.e. H−1) residual, which in the238

context of finite elements allows one to retain the advantages of least squares formulations239

while only requiring continuous basis functions, as in [11,16].240

One advantage of applying the Galerkin Neural Network framework to the H2 least241

squares formulation is that the regularity and global nature of functions in the set V σ
n,C is242

determined solely by the regularity of the activation function σ. In other words, choosing σ ∈243

C2(Ω̄) is sufficient to ensure that the resulting neural network functions are H2-conforming.244
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Figure 11: For t = 10−6, the y-component of the true error β − βi (top row) and the
y-component of the basis function ϕNNi (bottom row) for the 1st, 3rd, and 5th iterations of
Algorithm 1 for the univariate problem with variational formulation on BLS,LLS.

4.2.1 Benchmark Problem with Constant Load245

We return to the constant load univariate problem described in Section 4.1, this time applying246

Algorithm 1 to the variational formulation involving BLS and LLS. The hyperparameters247

are chosen as described at the beginning of Section 4.248

Figures 9-12 show the analogous results to Figures 7-8 for the least squares approach de-249

scribed by (19). We denote by ϕNNi , vNNi , and τNNi the basis functions used to approximate250

β, ω, and σ, respectively. Figures 11-12 show comparisons of the basis functions ϕNNi and251

vNNi with the errors in β and ω, respectively. We observe that no locking effect nor any252

spurious oscillations are present in the shear stress.253

4.2.2 Benchmark Problem with Sinusoidal Load and Boundary Layer254

We again consider the problem described in Section 3, this time with n = 1. In this case,255

the solution is fully two-dimensional and the shear stress contains a boundary layer of width256

O(t−1). Figure 13 shows the true shear stress in the x-coordinate when t = 10−2 as well257

as the neural network approximation to the shear stress when BLS and LLS are used in258

the variational formulation with Algorithm 1. Figure 14 shows the errors in the BLS-norm259

and L2-norm for each primal variable. The hyperparameters are chosen as described at the260

beginning of Section 4.261

We observe that while the mixed least squares variational formulation on XLS is capable262

of providing a uniformly accurate approximation in t when the solution is smooth, the same263

cannot be said for problems with boundary layers. In particular, we observe that most of264
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Figure 12: For t = 10−6, the true error ω − ωi (top row) and the basis function vNNi
(bottom row) for the 1st, 3rd, and 5th iterations of Algorithm 1 for the univariate problem
with variational formulation on BLS,LLS.

Figure 13: Left: True x-component of shear stress. Right: Neural network approximation
of x-component of shear stress with variational formulation on BLS, LLS.

the approximation error in the x-coordinate of the shear stress is encoded in its y-derivative265

– ∂σ(1)/∂y – while the variational formulation posed on BLS, LLS only contains information266

about ∂σ(1)/∂x.267

4.3 Least Squares Based on Brezzi-Fortin Formulation268

A third variational formulation of the Reissner-Mindlin problem starts by considering the269

Helmholtz decomposition of the shear stress which explicitly accounts for both the irrota-270

tional and solenoidal components of the shear stress. By writing the Helmholtz decompo-271

sition of the shear stress as σ = ∇⊥p − ∇r, Brezzi and Fortin arrived at the following272
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equivalent formulation to (17) [14]: seek (r,β, p, ω) ∈ H1
0 (Ω)×H1

0(Ω)×H1(Ω)/R×H1
0 (Ω)273

such that274 
(∇r,∇µ)Ω = (g, µ)Ω ∀µ ∈ H1

0 (Ω)

(∇β,∇ϕ)Ω + (∇⊥p,ϕ)Ω = (∇r,ϕ)Ω ∀ϕ ∈ H1
0(Ω)

(β,∇⊥q)Ω − t2(∇⊥p,∇⊥q)Ω = 0 ∀q ∈ H1(Ω)/R
(∇ω,∇v)Ω = (β + t2∇r,∇v)Ω ∀v ∈ H1

0 (Ω).

(24)

Thus, the system (24) may be solved in three stages: first, a straightforward solution of the275

Poisson equation with data g to obtain r; second, a solution of the perturbed, rotated Stokes276

problem with data (∇r, 0) to obtain β and p; and finally, another straightforward solution277

of the Poisson equation with data −∇ · (β + t2∇r) to obtain ω.278

In this work, we shall apply the Galerkin Neural Network algorithm based on a least
squares formulation of each of the equations of (24). We shall focus the brunt of our attention
on the inner perturbed Stokes problem. As stated in (24), the inner product described by

((β, p), (β, p)) 7→ (∇β,∇ϕ)Ω + (∇⊥p,ϕ)Ω + (β,∇⊥q)Ω − t2(∇⊥p,∇⊥q)Ω

is not positive definite. In particular, the choice β = ϕ = (1, 1)T and p = q = x + y
yields ((β, p), (β, p)) 7→ −2t2|Ω| < 0. Instead, we consider a least squares formulation of
the perturbed Stokes problem, which consists of the variational problem posed on XBF :=
(H2(Ω) ∩H1

0(Ω))× (H1(∆; Ω)/R) where H1(∆; Ω) := {v ∈ H1(Ω) : ∆v ∈ L2(Ω)} and XBF

is endowed with the norm

||(ϕ, q)||BF := (||ϕ||2H2(Ω) + ||1
t
(∇× β)||2Ω + ||q||2H1(Ω) + ||t∆q||2L2(Ω) + ||t∂nq||2H−1/2(∂Ω))

1/2

Figure 14: Relative energy error, relative L2 error in β and ω, and H1 error in σ after each
iteration of Algorithm 1 for the Reissner-Mindlin plate with boundary layer and variational
formulation on BLS,LLS.
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Figure 15: Errors after each iteration of Algorithm 1 for the univariate problem with
variational formulation on B̃BF , L̃BF .

(a) (b) (c)

(d) (e) (f)

Figure 16: For t = 10−6 in the univariate problem with variational formulation on B̃BF ,
L̃BF : (a)-(c) True error β(2) − β(2)

i . (d)-(f) Basis function ϕ
(2),NN
i .

with

BBF ((β, p); (ϕ, q)) := (−∆β +∇⊥p,−∆ϕ+∇⊥q)Ω + t−2(∇× β + t2∆p,∇×ϕ+ t2∆q)Ω

+ t2(∂np, ∂nq)H−1/2(∂Ω)

LBF ((ϕ, q)) := (∇r,−∆ϕ+∇⊥q)Ω.

Here, H−1/2(Ω) is the dual space to the Sobolev-Slobodeckij space [19]H1/2(Ω) and (·, ·)H−1/2(Ω)279

is its associated inner product.280
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(a) (b) (c)

Figure 17: For t = 10−6 in the univariate problem with variational formulation on B̃BF ,
L̃BF : basis function µNNi .

(a) (b) (c)

Figure 18: For t = 10−6 in the univariate problem with variational formulation on B̃BF ,
L̃BF : basis function q

(2),NN
i .

(a) (b) (c)

Figure 19: For t = 10−2 in the univariate problem with variational formulation on B̃BF ,
L̃BF : approximation σ

(2)
i = −∂pi/∂x− ∂ri/∂y.

The following result demonstrates that the Helmholtz least squares variational formu-281

lation for β and p is both continuous and coercive, thus allowing us to apply Algorithm282

1.283
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Figure 20: Energy error and L2 error in β and ω for the problem with sinusoidal load with
variational formulation on B̃BF , L̃BF .

Proposition 4.3. Let (β, p) ∈ XBF and suppose 0 < t 6 1. There exist constants C1 > 0
and C2 > 0 independent of t such that

BBF (β, p;ϕ, q) 6 C1||(β, p)||BF ||(ϕ, q)||XBF ∀(β, p), (ϕ, q) ∈ XBF

C2||(β, p)||2BF 6 BBF (β, p;β, p) ∀(β, p) ∈ XBF .

Proof. We begin by applying the Cauchy-Schwarz inequality with respect to L2 and H−1/2:

BBF ((β, p); (ϕ, q)) 6 || −∆β +∇⊥p||Ω · || −∆ϕ+∇⊥q||Ω

+ ||1
t
(∇× β + t2∆p)||Ω · ||

1

t
(∇×ϕ+ t2∆q)||Ω

+ t2||∂np||H−1/2(∂Ω) · ||∂nq||H−1/2(∂Ω)

6 (||β||H2(Ω) + ||p||H1(Ω))(||ϕ||H2(Ω) + ||q||H1(Ω))

+ (||1
t
(∇× β)||Ω + ||tp||H2(Ω)) · (||

1

t
(∇×ϕ)||Ω + ||tq||H2(Ω))

+ t2||∂np||H−1/2(∂Ω) · ||∂nq||H−1/2(∂Ω).

An application of the Cauchy-Schwarz inequality with respect to `2 yields the first result.284

As for the second inequality, given (β, p) ∈ XBF , we form the system285 
g1 := −∆β +∇⊥p in Ω

t · g2 := ∇× β + t2∆p in Ω

β = 0 on ∂Ω

g3 := t · ∂np on ∂Ω.

(25)

From [15], we have the a priori estimate

||β||2H2(Ω) + ||p||2H1(Ω) + ||t∆p||2Ω 6 C(||g1||2Ω + ||g2||2Ω).

from which we further obtain

||β||2H2(Ω) + ||p||2H1(Ω) + ||t∆p||2Ω 6 C(||g1||2Ω + ||g2||2Ω + ||tg3||2H−1/2(∂Ω)).
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(a) (b) (c)

(d) (e) (f)

Figure 21: For t = 10−2 in the problem with sinusoidal load with variational formulation
on B̃BF , L̃BF : (a)-(c) True error β(1) − β(1)

i . (d)-(f) Basis function ϕ
(1),NN
i .

Additionally, we have

||1
t
(∇× β)||Ω 6 ||t∆p||Ω + ||g2||Ω

6 C(||g1||Ω + ||g2||Ω + ||tg3||H−1/2(∂Ω))

which completes the proof.286

Approaches based on the H−1 norm of the residual of the second equation in (24) and287

the L2 norm of the residual of the third equation have again been explored in [10, 15],288

but approaches based fully on the L2 norm of the interior residuals, as described by BBF ,289

have not been used hitherto in practice due to the necessity of H2 regularity. Nevertheless,290

Proposition 4.3 shows that the ratio M/α for the formulation based on BBF and LBF is291

independent of t and a quasi-optimal approximation should be expected.292

We note that the term t2(∂np, ∂nq)H−1/2(∂Ω) corresponds to the weak enforcement of the

boundary condition ∂np = 0. The computation ofH−1/2 inner products is not straightforward
but could, in principle, be achieved using singular integrals [31]. Instead, for simplicity and
to avoid unnecessary technical distractions, we elect to impose the boundary condition on p
more strongly by considering the penalization t2(∂np, ∂nq)∂Ω. More specifically, we consider
the modified bilinear form

B̃BF ((β, p); (ϕ, q)) := (−∆β +∇⊥p,−∆ϕ+∇⊥q)Ω + t−2(∇× β + t2∆p,∇×ϕ+ t2∆q)Ω
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(a) (b) (c)

(d) (e) (f)

Figure 22: For t = 10−2 in the problem with sinusoidal load with variational formulation
on B̃BF , L̃BF : (a)-(c) True error β(2) − β(2)

i . (d)-(f) Basis function ϕ
(2),NN
i .

+ t2(∂np, ∂nq)∂Ω.

In order to apply this formulation to the examples in 4.2.1 and 4.2.2, we must determine
the appropriate boundary conditions on r and p. We impose r = 0 on ∂Ω. Due to the
periodic nature of β and ω along x = −π and x = π, σ is also periodic along x = −π and
x = π. Since we have

(σ · t)(x, y) = (∇r · t)(x, y)− (∇⊥p · t)(x, y)

= −(∇⊥p · t)(x, y) = −(∇p · n)(x, y) ∀(x, y) ∈ ∂Ω

where t is the unit counterclockwise tangent vector, we must have∇p·n|x=−π+∇p·n|x=π = 0293

on ∂Ω.294

4.3.1 Benchmark Problem with Constant Load295

Figure 15 shows the loss function (estimated energy error with respect to BBF ) per Galerkin296

Neural Network iteration as well as the L2 error of the rotation β and shear stress σ for297

t = 1, 10−2, 10−4, 10−6 in the case when n = 0. We denote by ϕNNi the basis functions for298

approximating β and by qNNi the basis functions for approximating p. The hyperparameters299

for this example and all remaining examples are chosen as described at the beginning of300

Section 4 with the exception that the activation function for each basis function for β and301
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p is σi(z) = tanh((1 + 0.55i)z). Figure 16-19 show the true errors and basis functions for302

i = 1, 3, 5. We observe no issues with locking.303

4.3.2 Benchmark Problem with Sinusoidal Load and Boundary Layer304

We next turn our attention to the model problem when n = 1. Figure 20 shows the loss305

function per Galerkin Neural Network iteration as well as the L2 error of the rotation β and306

shear stress σ for t = 1, 10−1, 10−2, 10−3 in the case when n = 1. Again, we observe no issues307

with locking. More importantly, we observe good resolution of the boundary layer as seen308

in Figure 25. Figures 21-24 show the true errors and basis functions for i = 1, 3, 5.309

4.3.3 Triangular Wave Forcing Term310

We next consider the case when the forcing term is the triangular wave shown in Figure 26.
The domain and boundary conditions considered are the same as in 4.2.2. The triangular
wave function has a Fourier series representation given by

gT (x) =
8

π2

∞∑
n=1

sin2(nπ/4)

n2
cos(nx),

from which the exact solution may be obtained by superimposing the solutions corresponding311

to each n, as in Section 3.312

Figure 27 shows the loss and L2 error in β and σ while Figures 28-31 show the basis313

functions ϕNNi , µNNi , and qNNi as well as the approximations βi and pi. We again observe314

that the boundary layer is resolved correctly.315

5 Conclusions316

We have presented a neural network approach to approximating Reissner-Mindlin plates317

which is uniformly accurate in the plate thickness. The main contributions of this work are318

as follows. The neural network framework utilized is oblivious to the nature of the PDE and319

(a) (b) (c)

Figure 23: For t = 10−2 in the problem with sinusoidal load with variational formulation
on B̃BF , L̃BF : basis function µNNi .
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(a) (b) (c)

Figure 24: For t = 10−2 in the problem with sinusoidal load with variational formulation
on B̃BF , L̃BF : basis function qNNi .

thus requires no structural modifications in order to be applied to the Reissner-Mindlin model320

other than a continuous, coercive, symmetric, positive-definite bilinear operator. In present-321

ing results for two new least squares variational formulations of the Reissner-Mindlin plate,322

we have demonstrated even for neural networks the importance of selecting a variational323

formulation which does not exhibit degenerate behavior as the plate thickness is reduced.324

(a) (b) (c)

(d) (e) (f)

Figure 25: For t = 10−2 in the problem with sinusoidal load with variational formulation
on B̃BF , L̃BF : (a)-(c) Approximation σ

(1)
i = ∂pi/∂y−∂ri/∂x. (d)-(f) Approximation σ

(2)
i =

−∂pi/∂x− ∂ri/∂y.
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Figure 26: The triangular wave function gT .

Moreover, in comparison to traditional finite element methods, a reduction of the PDE to325

a first order system of least squares (FOSLS) is unnecessary with Galerkin neural networks326

as the activation functions are global without element continuity constraints and are only327

required to be elements of Hk, where k is the order of the PDE. Additionally, the accurate328

resolution boundary layer problems using finite element approaches typically requires the use329

of graded meshes around the boundary layer. Our approach in comparison does not utilize330

any a priori knowledge of the location of the boundary layer. Finally, numerical results are331

provided for a complex benchmark problem which exhibits a boundary layer in the shear332

stress, and we also provide a framework for synthesizing a large class of test problems with333

analytic solutions which are crucial for evaluating performance of numerical methods – even334

beyond neural network approaches – applied to Reissner-Mindlin plates.335
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Figure 27: Energy error and L2 error in β, ω, and σ for the problem with triangular wave
load with variational formulation on B̃BF , L̃BF .
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(a) (b) (c)

(d) (e) (f)

Figure 28: For t = 10−6 in the triangular wave forcing term problem with variational
formulation on B̃BF , L̃BF (a)-(c) True error β(1) − β(1)

i . (d)-(f) Basis function ϕ
(1),NN
i .
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(a) (b) (c)

(d) (e) (f)

Figure 29: For t = 10−6 in the triangular wave forcing term problem with variational
formulation on B̃BF , L̃BF : (a)-(c) True error β(2) − β(2)

i . (d)-(f) Basis function ϕ
(2),NN
i .

(a) (b) (c)

Figure 30: For t = 10−2 in the triangular wave forcing term problem with variational
formulation on B̃BF , L̃BF : basis function µNNi .
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(a) (b) (c)

Figure 31: For t = 10−2 in the triangular wave forcing term problem with variational
formulation on B̃BF , L̃BF : basis function qNNi .

(a) (b) (c)

(d) (e) (f)

Figure 32: For t = 10−2 in the triangular wave forcing term problem with variational
formulation on B̃BF , L̃BF : (a)-(c) Approximation σ

(1)
i = ∂pi/∂y− ∂ri/∂x. (d)-(f) Approxi-

mation σ
(2)
i = −∂pi/∂x− ∂ri/∂y.

29



7 Appendix339

The coefficients An(t), Bn(t), Cn(t), and Dn(t) appearing in (13) are determined by the340

boundary conditions: βn = 0 and ωn = 0 on ΓD with periodic conditions on Γper. Namely,341

we require that βn(x, 1) = 0 and ωn(x, 1) = 0 while the periodic boundary conditions on Γper342

are automatically satisfied thanks to the structure of βn and ωn. Additionally, satisfying the343

PDE −∆βn + t−2(βn−∇ωn) = 0 gives rise to an additional constraint Υ′′n(y)−n2Υn(y, t) =344

Ψn(y, t)− 1.345

These requirements lead to a linear system of equations which determine the coefficients346

given by347 

λnt coth(λn) · An(t)− n ·Bn(t)− n · Cn(t)− n ·Dn(t) = − 1

n3

nt · An(t)− (n coth(n) + 1) ·Bn(t)− n tanh(n) · Cn(t)− n tanh(n) ·Dn(t) = 0

−Bn(t)− Cn(t)− (1 + t2) ·Dn(t) = − t
2

n2
− 1

n4

2n ·Bn(t) + tanh(n) ·Dn(t) = 0

(26)

The solution to (26) can be computed directly but has a rather complicated form. How-
ever, one can instead seek a series approximation valid for t� 1 of the form

~αn(t) = ~γ0 + ~γ1t+ ~γ2
t2

2
+O(t3),

where ~αn(t) is the vector of coefficients ~αn(t) = (An(t), Bn(t), Cn(t), Dn(t))T . Let Mn(t)

denote the coefficient matrix and ~Fn(t) the right-hand side of (26), respectively. Then
expanding M−1(t) as a Taylor series about t = 0 yields the series expansion

~αn(t) = [M−1(0)−M−1(0)M ′(0)M−1(0)t+ (−M−1(0)M ′′(0)M−1(0)+

2M−1(0)M ′(0)M−1(0)M ′(0)M−1(0))
t2

2
+O(t3)]~Fn(t).

The vectors ~γ0, ~γ1, and ~γ2 are thus given by

~γ0 = M−1(0)~Fn(0) =
sinh(2n)

n4(2n+ sinh(2n))


0

−n tanh(n)
n coth(n)− 2n2 + 1

2n2


~γ1 = −M−1(0)M ′(0)M−1(0)~F ′n(0) +M−1(0)~F ′n(0) = ~0

~γ2 = M−1(0)~F ′′n (0)−
(
M−1(0)M ′′(0)M−1(0) + 2M−1(0)M ′(0)M−1(0)M ′(0)M−1(0)

)
~Fn(0)

=


2/n
0
0
0

+
sinh(2n)

2n+ sinh(2n)


−4

−2 tanh(n)/n
2(n coth(n)− 2n2 + 1)/n2

4
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Figure 33: Coefficients An(t), Bn(t), Cn(t), Dn(t) and their series expansions for n =
1, 10, 20, 30.

+

(
sinh(2n)

2n+ sinh(2n)

)2


0

4 tanh(n)/n
−4(n coth(n)− 2n2 + 1)/n2

−8

 .
We note in particular that An(t) = O(t2) and therefore, the factor An(t)/t2 which appears348

in (16) remains bounded as t→ 0.349

Moreover, Figure 33 shows plots of An(t), Bn(t), Cn(t), and Dn(t) versus t along with350

their approximations for n = 1, 10, 20, 30. It is clear that the series expansions are highly351

accurate for t < 10−2. As n is increased, discrepancies between the coefficients and their352

series expansions appear to also increase for t > 10−2. However, since the Fourier coefficients353

of βn, ωn, and σn generally decrease in magnitude as n increases, the net effect of these354

discrepancies is negligible. Indeed, Figure 34 shows the error in β, ω, and σ for the problem355

in Section 4.3.3 with t = 10−2 when the exact coefficients are used compared to the series356

expansions. We thus use the simpler series expansions when computing the exact solutions357

for all model problems.358

Lastly, we note that the evaluation of quantities such as sinh(λny) and cosh(λn) for small359

t in (13) requires the use of high-precision arithmetic libraries, such as [24] in Python, in360

order to accurately evaluate the true solution.361
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Figure 34: Errors in the true solution of the model problem in Section 4.3.3 with t = 10−2

when using exact coefficients compared to their series expansions.
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